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Abstract

Background: The Brownian bridge movement model (BBMM) provides a biologically sound approximation of the
movement path of an animal based on discrete location data, and is a powerful method to quantify utilization
distributions. Computing the utilization distribution based on the BBMM while calculating movement parameters
directly from the location data, may result in inconsistent and misleading results. We show how the BBMM can be
extended to also calculate derived movement parameters. Furthermore we demonstrate how to integrate
environmental context into a BBMM-based analysis.

Results: We develop a computational framework to analyze animal movement based on the BBMM. In particular, we
demonstrate how a derived movement parameter (relative speed) and its spatial distribution can be calculated in the
BBMM. We show how to integrate our framework with the conceptual framework of the movement ecology
paradigm in two related but acutely different ways, focusing on the influence that the environment has on animal
movement. First, we demonstrate an a posteriori approach, in which the spatial distribution of average relative
movement speed as obtained from a “contextually naïve” model is related to the local vegetation structure within the
monthly ranging area of a group of wild vervet monkeys. Without a model like the BBMM it would not be possible to
estimate such a spatial distribution of a parameter in a sound way. Second, we introduce an a priori approach in which
atmospheric information is used to calculate a crucial parameter of the BBMM to investigate flight properties of
migrating bee-eaters. This analysis shows significant differences in the characteristics of flight modes, which would
have not been detected without using the BBMM.

Conclusions: Our algorithm is the first of its kind to allow BBMM-based computation of movement parameters
beyond the utilization distribution, and we present two case studies that demonstrate two fundamentally different
ways in which our algorithm can be applied to estimate the spatial distribution of average relative movement speed,
while interpreting it in a biologically meaningful manner, across a wide range of environmental scenarios and
ecological contexts. Therefore movement parameters derived from the BBMM can provide a powerful method for
movement ecology research.
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Background
Modelling movement as a stochastic process provides
means to estimate paths or location distributions when
observations were not recorded continuously. This per-
spective is, however, often overlooked when analyzing
movement based on discrete observations. For instance
kernel-density estimation, which is frequently applied to
movement data, does not take temporal autocorrelation
into account. It is used for home-range estimation [1, 2]
when the sampling rate is sufficiently low so that indepen-
dence between observations can reasonably be assumed.
Similarly, home range estimation based on minimum
convex polygons [3] also ignores the actual movement
between different locations. In other uses of movement
data, locations are interpolated under the assumption of
a linear movement path between observations [4]. This
assumption is unrealistic except for densely sampled data,
and can lead to wrong conclusions on sparser data as
illustrated in Fig. 1(a).
Stochastic models like state-space models [5–7] and the

Brownian bridge movement model (BBMM) [8–12] have
been successfully applied for estimating the movement
path and intensity of space use based on discrete loca-
tion data. In this paper we explicitly focus on the BBMM
(but see online Additional file 1 for a more elaborate dis-
cussion of the similarities and differences between the
BBMM and state-space models). The BBMM takes the
movement of animals into account to calculate space use
patterns. It does so making relatively few assumptions,
yet still making biological sense in that its parameters
reflect real properties of the relocation data: measure-
ment accuracy and –in a way– speed and directionality
of movement. The assumption underlying the BBMM is
that the entity exhibits purely random (i.e., Brownian)
motion. In a typical scenario in which the BBMM is
applied, we have multiple location measurements and are
interested to infer the location at times in the interval
between two consecutive measurements. Therefore, we
condition Brownian motion on the measured locations
at the observation times. Such a conditioned Brownian
motion is called a Brownian bridge, which is illustrated
in Fig. 1(b–c). The BBMM has the desirable property of
being able to take measurement uncertainty into account,
usually by assuming that this uncertainty follows a
Gaussian distribution around a given relocation point
(which is an appropriate assumption for e.g. relocations
obtained from GPS-telemetry [13]). In contrast to pure
Brownian motion, however, additional Gaussian noise
results in a process that is not Markov [14].
The use of the BBMM in the context of movement ecol-

ogy was proposed by Bullard [8] and Horne et al. [9] and
is defined by the measurement error and the diffusion
coefficient, which relates to an organism’s mobility. Horne
et al. propose to compute the diffusion coefficient using

maximum likelihood estimation, thereby explicitly assum-
ing homogeneous movement throughout an entire tra-
jectory. However, as movement parameters change over
time, it is biologically more realistic to allow the diffu-
sion coefficient to vary. Kranstauber et al. [10] use the
Bayesian information criterion to detect changes in the
movement state of an organism, and use this to vary the
diffusion coefficient over time. Bivariate Gaussian bridges
factorise diffusion into a parallel and an orthogonal com-
ponent [11]. A related algorithm is the Biased random
walk proposed by Benhamou [15]. In his study the sam-
pling density is increased using linear interpolation and
then kernel density estimation is used at the resulting
set of locations. Overall, these methods provide a more
advanced estimate for the location distribution in rela-
tion to using a fixed diffusion coefficient, because they are
more dynamic or segment-specific.
The BBMM has so far been exclusively used to com-

pute utilization distributions. The analysis of movement,
however, often does not ask for location as such, but
rather focuses on derived movement parameters like rel-
ative speed, or more complex analysis tasks like similarity
estimation between trajectories. In recent work Buchin
et al. [16] show how to derive such parameters and how to
perform fundamental analysis tasks under the assumption
of a BBMM. Since their paper focused on the techni-
cal side of mathematically deriving the corresponding
parameters, they assumed that movement takes place in a
featureless space, not taking into account the external and
internal factors that govern organismal movement.
Clearly though, these factors are essential for a proper

biological understanding of animal movement. Nathan
et al. [17] proposed a paradigm, which incorporates four
basic components that affect a movement path: exter-
nal factors, the internal state of the moving organism, its
navigational capacity and its motion capacity. Getz and
Saltz [18] present a framework for generating and ana-
lyzing movement paths using this paradigm, which can
be used to generate movement paths by simulation and
to segment movement paths by state-space methods. It
does not, however, deal with the interpolation of location
observations.
In this article we present a computational framework

for movement analysis using the BBMM in the context of
the movement ecology paradigm. Unique to our frame-
work is the application of the BBMM beyond the estima-
tion of utilization distributions to also calculate derived
movement parameters and their spatial distribution. The
derived movement parameter we focus on in this paper is
relative speed and its spatial distribution. It is important
to note that in the BBMM speed estimations necessar-
ily need to be relative to a time scale, since Brownian
motion is nowhere differentiable. Therefore, speed calcu-
lated in our framework is always relative speed1 and not
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Fig. 1 Linear interpolation compared to Brownian bridges. Linear interpolation compared to Brownian bridges. In this example the movement path
is shown in gray and the location data as black dots connected by straight line segments. a Linear interpolation would incorrectly report that the
movement path does not traverse the areaA. b Two realizations in the BBMM, one of which traversesA. c Utilization distribution (density
indicated by shading) and 99 % volume isopleth, which intersectsA

an absolute measure. Further, we note that in our frame-
work calculations are performed per bridge, and for any
given bridge only the two adjacent observations are used.
While this is in line with the work of Horne et al [9], this
does not account for sequence of observations being not
Markov [14] in the presence of measurement errors.
In the Results section we first discuss how various fac-

tors influencing a movement path can be incorporated in
such an analysis. We differentiate between two related but
acutely different approaches to do so. The first approach
takes factors into account a posteriori, that is, they do not
influence the movement model but are used to biologi-
cally interpret its outcome. The second takes factors into
account a priori, that is, factors influence a key model
parameter (the diffusion coefficient), and thereby the esti-
mation of the movement path and derived properties.
We demonstrate our framework on data of two species

with distinctly different movement.
We apply the a posteriori approach in a case study on

how themovement speed of vervet monkeys (Chlorocebus
pygerythrus) within a monthly ranging area is related to
local vegetation density, whereas for the a priori approach
we look at the flight mode of European bee-eaters (Merops
apiaster) during migration.

Results and discussion
Computational aspects of the movement ecology
framework
Organismal movement can be perceived as the outcome
of the interaction between four key biological compo-
nents: factors external to the organism, the organism’s
internal state, its navigational capacity, and its motion
capacity [17]. In this paper we focus on external fac-
tors and consider two ways in which their relation to

the movement can be investigated. First we consider the
case in which the components do not affect the compu-
tation of the BBMM, but instead are used a posteriori
to biologically interpret its outcome. Second, we use the
components a priori to dynamically modify a key parame-
ter of the BBMM, the diffusion coefficient. This approach
is in general more difficult to handle computationally. The
aspect which dictates this difficulty is the degree of spatial
dependence of the components. If they are independent
of space, possibly conditional on time or some measure-
ment (e.g. behaviour, which may be identified in the basis
of a short acceleration signal) [19]), it can be handled in
an analytical movement model. In contrast, if a factor is
especially spatially dependent (e.g. a highly heterogeneous
habitat), an explicit simulation of the spatial trajectory
is required. This would effectively imply a multitude of
simulations because we are interested in conditional dis-
tributions. If a factor is only varying relatively little over
the length of a trajectory segment (e.g. atmospheric vari-
ables like wind or thermal convection), it is possible to
make a quasi-steady state assumption and consider it as
constant within a local spatial domain. Thismakes it much
easier to handle spatial dependency in a BBMM.
In the following, we elaborate on the various settings

at the hand of two case studies. In the first study the
external factor (vegetation density) is given as raster data
and has a strong spatial dependency. In this setting the
a posteriori approach is applicable. The challenge here
is to compute a spatial distribution of average speed. In
the second study the external factor (atmospheric condi-
tions) is given along the movement path and therefore the
a priori approach is applicable. Since in this case study
the movement behaviour depends crucially on the atmo-
spheric conditions, the a posteriori approach would likely
not provide added value.



Buchin et al. Movement Ecology  (2015) 3:18 Page 4 of 11

Movement speed of vervet monkeys – the a posteriori
approach
In the first case study, we apply our framework to inves-
tigate local differences in the movement speed of a wild
group of free-ranging vervet monkeys within their rang-
ing area over a 1 month period. Movement data were
obtained from a GPS logger, deployed on a single adult
female within the group and programmed to collect coor-
dinates at hourly intervals during the animals’ daily activ-
ity period. In total, 465 relocations were collected this way
(Fig. 2a), representing 31 daily trajectories (Fig. 2b). The
GPS data is provided as Additional file 2.
We first employ our implementation of the dynamic

BBMM to calculate the monthly utilization distribution of
the monkeys and delineate their ranging area by a 99 %
volume isopleth (Fig. 2c). This revealed the monkeys used
an area of 1.3 km2 over the observation period. Then
we investigate how speed estimates from this dynamic
BBMM relate to the external environment in which the
animals are moving. We hypothesize that the monkeys
travel faster in the more open, less densely vegetated areas
of their range (due to greater exposure to predators and
lower food availability), and slower in those areas in which
the vegetation is more lush (more safety and food). We
investigate this hypothesis by relating our average speed
estimate (calculated over 5 minute time intervals; Fig. 2d)
to local vegetation density, proxied by a high resolution

(0.50 × 0.50 m2) Normalized Difference Vegetation Index
(NDVI) image (see Methods section). High NDVI values
correspond to high vegetation density, whereas low val-
ues reflect sparse vegetation. We thus predict a negative
association between the average movement speed of the
monkeys and local NDVI values.
To statistically test this prediction, we generated 1000

random sample locations throughout the monthly range
of the animals and extracted both local NDVI and speed
estimate values. Since data exhibited significant levels
of spatial autocorrelation (as indicated by inspections
of Moran’s I values and correlograms), statistical sig-
nificance of the association between local vegetation
density and speed of movement was assessed using geo-
graphically effective degrees of freedom [20]. This anal-
ysis revealed a significant, negative correlation between
local NDVI-values and BBMM-estimated average rela-
tive speed (rPearson = −0.213, F(1, 975.68) = 46.15, p <

0.0001), in line with our biological expectations. We
also performed the same analysis using only one diffu-
sion coefficient (i.e., non-dynamic BBMM), which also
showed a significant, negative correlation (rPearson =
−0.175, F(1, 150.27) = 4.78, p = 0.03).

Migration of European bee-eaters – the a priori approach
The European bee-eater is a species that uses both
flapping and soaring-gliding flight during its migratory

Fig. 2 Spatial distribution of vervet monkey movement data. The Brownian bridge movement model takes the GPS fixes along the trajectories as
input and is used to calculate a probability density distribution function of location (i.e. the utilisation distribution), but also a spatial distribution of a
movement property like speed (red equals low, violet high speed). The black outline demarcates the 99 % volume isopleth
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movement. In this case study we use the relationship
between atmospheric conditions and flight mode in this
species [21, 22] to construct a biologically informed
BBMM that generates estimates of flight speed and trajec-
tory uncertainty over different segments of the movement
path, depending on likely flight-mode. Even though the
influence of atmospheric conditions on the movement
path (mediated by flight mode) has previously been inves-
tigated [22–25], this information has not yet been inte-
grated into amovementmodel for the European bee-eater.
We hypothesize that soaring-gliding flight is character-

ized by an overall less straight, more tortuos path because
in this flight mode birds may rely on the spatial variabil-
ity of convective thermal intensity. Since soaring-gliding
birds may actively select to circle in strong thermals that
are not necessarily found in the exact direction of their
flight destination, their path may be less direct or straight.
Additionally, since migration speed scales differently with
bird size for flapping and soaring-gliding flight modes, for
relatively small birds like the European Bee-eater (mean
bodymass of 56 g [22]), it has been suggested that soaring-
gliding will be slower than flapping flight [26]. To inves-
tigate these hypotheses we calculate and compare the
diffusion coefficients and average flight speeds for the two
flight modes using the BBMM.
The data set consisted of 91, 141 and 94 segments char-

acterized by flapping, mixed and soaring-gliding flight
modes respectively (see [22] for additional details). The
data was collected by radio telemetry, resulting in an irreg-
ular measurement frequency of approximately 6 minutes
(343 seconds with standard deviation of 547 seconds). The
data set is provided as Additional file 3. We use a model to
predict the fraction of time spent on soaring-gliding flight
as a function of atmospheric conditions (most notably,
the magnitude of the Turbulence Kinetic Energy, or TKE).
After calibration, our model classified the animals’ flight
mode with an overall error rate of 1.1 %. This model has
the following form:

ea·TKE−b

1 + ea·TKE−b ,

where the value (with 95 % confidence bounds) for param-
eter a is 74 (25 - 227), and for parameter b is 16 (5 -
50). Figure 3 shows the shape of this model as well as its
predictive uncertainty.
We selected the movement segments with the pure

flapping and soaring-gliding flight modes and applied
the maximum likelihood estimation by Horne et al. [9]
separately to these. This resulted in estimated diffusion
coefficients for flapping as 2965 m2/s and 4505 m2/s
for soaring-gliding. This confirms our hypothesis that
soaring-gliding is associated with a more tortuous flight
path. The fact that this hypothesis could be investigated
empirically on the basis of such sparse and irregularly

Fig. 3 Logistic function. The logistic function describing the fraction
of time the birds flew using soaring-gliding as a function of
turbulence kinetic energy (TKE). The grey-shaded range is a 0.95
confidence interval

sampled data is a distinct advantage of our approach
over previous BBMM-based methods that, moreover are
restricted to calculations of space use only. The difference
in diffusion coefficients between the two flight modes is
illustrated in Fig. 4. In this figure, the spatial distributions
of two individuals are shown along with their flight mode.
The movement path is clearly wider for segments with
soaring-gliding flight than for those with flapping flight,
and, to our knowledge, this aspect of flight mode on the
migratory track has not yet been described elsewhere.
We calculated the movement speeds using our BBMM

over 5 minute instances. Reasons for this resolution were
the resolution of the original observations (approximately
6 minutes on average) and the fact that autocorrelation is
very limited at this 5 minute resolution. At this resolution
we found that the average relative cross-country speed
for flapping flight was 9.7 m/s, while in soaring-gliding
flight it was 8.5 m/s, a significant difference of 1.2 m/s
(Welch two-sample T-test; 95 % confidence-interval: 0.91
- 1.56). The variance of relative cross-country speed for
flapping flight was 16.2 m2/s2 and 7.1m2/s2 for soaring-
gliding flight, a ratio of 2.30 (significant according to a
2-sided F-test; 95 % confidence-interval: 2.05 - 2.60).
With respect to the speed difference we note, though,

that wind conditions were somewhat different between
segments flown using different flight modes. For exam-
ple, Sapir et al. [27] have recently found that bee-eaters
undertaking flapping flight experienced higher head-
winds, while during soaring-gliding wind was overall less
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Fig. 4 Changing diffusion coefficients. Two examples of the effect of a changing diffusion coefficient on the predicted trajectory. The coloured line
is interpolated linearly between measured locations, where blue means a low diffusion coefficient mainly flapping flight), and red means a high
diffusion coefficient (mainly soaring/gliding flight). The contours indicate the 90 % and 99 % volume isopleths based on the trajectory. In the
example to the right the time passed between two measurements is indicated. A larger diffusion coefficient results in a wider contour. For instance,
of two bridges of similar duration (4:55 and 4:57 minutes and length the red bridge has a wider contour than the blue

intense and this may have influenced our calculations that
dealt only with the cross-country flight speed. Figure 5
shows the spatial distribution of average cross-country
speed relative to three different time scales. We further
note, that the speed variability within the soaring-gliding
flight mode could be resolved if fine-resolution obser-
vations (e.g. < 30 seconds) would be available. In that
scenario, the variability in speed differences which is now
implicit in the higher diffusion coefficient for that mode
would become explicit through a higher variance in speed
(at fine resolutions) for the soaring-gliding flight mode.

We further note that the calculated speeds depend on
the diffusion coefficient, the displacement between two
observations and the chosen time scale; therefore –as is
the case here– a higher diffusion coefficient does not
necessarily imply higher speed.

Conclusions
We demonstrated how the Brownian bridge movement
model can be extended to compute the spatial distribu-
tion of derived movement parameters, such as relative
speed, and used two case studies to illustrate different
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ways (the a posteriori and a priori approach) in which our
computational framework can integrate environmental
factors with the BBMM. In both case studies our frame-
work provided meaningful biological insights that could
not have been obtained previously from the BBMM.
In the first case study, we used our framework to first

calculate the utilization distribution and monthly rang-
ing area of a group of vervet monkeys. Subsequently, we
could analytically confirm the hypothesized relationship
between the local average speed with which the animals
traverse their ranging area to local vegetation density. Cor-
relating local average speed to vegetation density required
BBMM-based calculations novel to our paper, specifically
an estimation of the spatial distribution of speeds. It would
be interesting to see how a correlating variable could be
used to estimate diffusion coefficients of a BBMMdirectly,
which however seems like a computationally challenging
task; this could mean that an a posteriori approach would
be used as inspiration to apply an a priori approach.
In the second case study, we used existing knowledge

about the relationship between atmospheric conditions
and flight mode of migrating European bee-eaters, to
evaluate whether different flight modes result in differ-
ent average cross-country flight speed and tortuosity of
the movement path. This was not possible in previous
studies [21, 22] due to varying sampling intervals. Here,
however, we first fit a biologically informed BBMM, which
then enabled us to demonstrate that soaring-gliding flight
involves higher variability in route straightness and lower
flight speeds than flapping flight. Our work therefore adds
a novel perspective to bee-eater biology, and the novel
findings –not discovered by the traditional approaches–
demonstrate the usefulness of the new approach.
Both case studies heavily rely on the ability to not only

estimate the spatial distribution of an animal but to also
estimate derived movement parameters and their spatial
distribution based on the BBMM – an application of the
BBMM unique to our work. We note that many of the
conceptual questions we address for the BBMM –like the
use of spatial distributions of movement parameters to
integrate environmental factors into the analysis– are also
relevant to other movement models.
In general, our framework may apply to settings where

environmental factors are expected to influence veloc-
ity. For terrestrial, aquatic and airborne organisms that
could respectively be terrain ruggedness, currents and
wind. However, also an organism’s internal state or inter-
action with other organisms may (when observations on
these variables are available) be incorporated in the anal-
ysis. Even though our case studies do not represent all
these possibilities, they do demonstrate that the deriva-
tion of movement parameters and their spatial distri-
bution via BBMM is a powerful method for movement
research.

Methods
Methods for computing movement parameters in the
Brownian bridge movement model
We first discuss how various movement parameters are
calculated in the BBMMand similar models.We then pro-
vide details on the specific methods used in the two case
studies. The BBMM assumes that an entity exhibits Brow-
nian motion between measured locations. A Brownian
bridge is the distribution of this process conditioned on
the locations of both endpoints. To model uncertainty in
the measured locations and to avoid a degenerate proba-
bility distribution at the time of a measurement, the loca-
tions are often assumed to be normally distributed around
the measured location. All of the following calculations
are performed for individual Brownian bridges and only
use the directly adjacent measurements. Note that in the
presence of measurement errors the sequence of observa-
tions does not satisfy the Markov property [14], and any
Brownian bridge actually depends on more than just the
adjacent measurements. Thus, we need to assume that
the measurement error is small relative to the diffusion
coefficient.
If we assume that we have two locations xi, xi+1 mea-

sured at times ti, ti+1 with variances δ2i and δ2i+1 respec-
tively, the position Xt at a time t ∈[ ti, ti+1] follows a
circular bivariate normal distribution with parameters

μ(t) = (1 − α)xi + αxi+1,
σ 2(t) = (ti+1 − ti)α(1 − α)D + (1 − α)2δ2i + α2δ2i+1.

Here, α = t−ti
ti+1−ti is a variable that linearly moves from 0

to 1 as t moves from ti to ti+1 and D is the diffusion coef-
ficient of the Brownian motion, which is often estimated
by a maximum likelihood method [9]. When the trajec-
tory contains different movement states over time, it may
be appropriate to vary the diffusion over time rather than
to keep it constant [10].
Given these probability distributions, derived parame-

ters such as distance or speed (relative to a time scale)
can be determined [16]. These parameters are important
building blocks for the detection of many movement pat-
terns. We summarize the results on the distributions of
these parameters here, for full derivations we refer to [16]
and online Additional file 4. Note that the derivation of
velocity in [16] does not handle all possible dependencies
and is superseded by the derivation in Appendix 1.
If the positions of two animals A and B at time t have

independent circular normal distributions with means
μA(t) and μB(t) and variances σ 2

A(t) and σ 2
B(t) respec-

tively, the distance betweenA andB has a Rice distribution
with parameters |μA(t) − μB(t)| and

√
σ 2
A(t) + σ 2

B(t). The
average velocity over a time interval [ t1, t2] is given by
the difference between two (generally not independent)
circular normal distributions, for X(t2) and X(t1). The
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velocity has a circular normal distribution with mean
μ(t2)−μ(t1)

t2−t1 , while the expression for the variance depends
on the number of location measurements that were
obtained between t1 and t2.
Let ts, ti and tf be the time stamps of three consecutive

observations with location variances δ2s , δ2i and δ2f respec-
tively, chosen such that ts ≤ t1 < ti. The observation at
tf is only needed in the calculations if ti < t2 ≤ tf . The
variance of the velocity is:

σ 2
V (t1, t2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

δ2s +δ2i
(ti−ts)2

+
(

1
ti−ts + 1

t2−t1

)
if t1 < t2 ≤ ti,

σ 2(t1)+σ 2(t2)−2
(
t1−ts
ti−ts

)(
tf −t2
tf −ti

)
δ2i

(t2−t1)2
if ti < t2 ≤ tf ,

σ 2(t1)+σ 2(t2)
(t2−t1)2

otherwise.

Let μV and σ 2
V be the parameters of the velocity dis-

tribution over a time interval [ t1, t2]. Speed (the absolute
value of velocity) over this interval then has a Rice distri-
bution with parameters |μV | and σV . The direction of this
velocity has a distribution with density

f (γ ) = e− ν2
2

2π
+ ν cos η

2
√
2π

exp
(

ν2
(
cos2 η − 1

)
2

)

×
(
1 + erf

(
ν cos η√

2

))
,

where ν = |μV |
σV

is the noncentrality of the velocity distri-
bution and η = atan2

(
μV

) − γ is the angle between the
direction of the mean and the direction under considera-
tion.
To obtain spatial distributions of speed, we consider the

speed over a time interval [ t + 	ts, t + 	tf ], after fix-
ing the position at one time t to a fixed location. If the
time interval contains the time at which the position is
fixed, i.e. 	ts ≤ 0 and 	tf ≥ 0, the position distribu-
tions at both endpoints of the interval are independent.
The conditioned velocity and speed distributions are then
determined from these two distributions. The spatial dis-
tribution of speed and the effect of the choice of the time
scale (	tf − 	ts) is illustrated in Fig. 5 by the example of
the data used in the second case study.
We do not give the details about these position distribu-

tions here, but refer to Appendix 1. Let μs, μf , σ 2
s and σ s

f
represent the respective means and variances of the con-
ditioned positions at both endpoints of the interval. Then
by independence of the positions the velocity distribution

conditioned on Xt = x is given by

Vx;t(t + 	ts, t + 	tf ) = Xt+	tf − Xt+	ts

	tf − 	ts

∼ N
(

μf − μs

	tf − 	ts

) (
σ 2
s + σ 2

f(
	tf − 	ts

)2
)
.

As discussed before, the speed has a Rice distribution.
We determine the average speed at a particular location
by computing a weighted average over time of the mean
speed. The weight is given by the probability density of the
animal’s position at the given time and location. That is,

S(x) = 1∫
fXt (x) dt

∫
fXt(x)E

[|Vx;t(t + 	ts, t + 	tf )|
]
dt.

(1)

Methods for the analysis of the movement speed of vervet
monkeys in relation to their environment
Vervet monkeys are group-living primates that are abun-
dant throughout most of sub-Saharan Africa [28]. They
occur in stable, mixed-sex groups of typically 25-30 ani-
mals that consist of multiple adult males and females
along with their offspring. Patterns of home range selec-
tion and general space use are strongly affected by external
environmental factors such as primary productivity and
vegetation structure [29] as well as the distribution of
food, surface water and perceived predation risk [30].
In order to investigate whether the movement speed

of animals is similarly affected by external variables, the
data used in this case study were collected on a wild
group of vervet monkey ranging freely in their natural
habitat in Kwazulu-Natal, South Africa, during December
2010. A digital telemetry collar (e-obs Type 1A, 69 g
per unit, equivalent to just over 2 % of the tagged ani-
mal’s body weight; All work at the Inkawu Vervet project
was approved by the relevant local authorities (the ethi-
cal boards of Ezemvelo KwaZulu-Natal Wildlife and the
University of Cape Town, South Africa), and complies
with EU-directive 2010/63/EU on the protection of ani-
mals used for scientific purposes) was deployed on a single
adult female within the group and programmed to obtain
GPS-fixes at hourly intervals throughout the daily activ-
ity phase of the animals (05:00 – 19:00). Given that vervet
monkey groups typically move as coherent units through
the landscape, GPS-coordinates obtained from the tagged
female were taken to represent themovement of the entire
group. Local vegetation density was estimated from a
multi-spectral, high-resolution (0.50 × 0.50 m2 pixel size)
satellite image (WorldView II, DigitalGlobe Inc.) obtained
over the study-period. From this image, we calculated the
Normalized Difference Vegetation Index (NDVI) [31], a
well-established spectral correlate of primary productivity
and vegetation structure.
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In our dynamic BBMM calculations, we did not con-
sider bridges at the beginning of the day that stayed very
close (≤ 50m) to the starting location, as this indicated the
monkeys had not commencedmoving yet, and similarly at
the end of the day near the final location. On the remain-
ing bridges the method by Kranstauber et al. [10] was used
to estimate the diffusion coefficient (using a margin of
3 and a window size of 7). The average speed distribu-
tion presented in the Results section, was computed at a
time scale 	t of 5 minutes. Mean speed was computed as
defined in Equation 1, over two time intervals relative to
the focal point: one directly preceding it (i.e. 	ts = −	t,
	tf = 0), and one directly following it (i.e. 	ts = 0,
	tf = 	t). If we had used only one of these intervals,
we would not have been able to compute a speed near the
beginning or end of the daily activity period, which could
have resulted in missing values in the distribution. For the
analysis with only one diffusion coefficient we used the
method by Horne et al. [9]. The R scripts that were used
in this analysis are provided as Additional file 5.

Methods for migration of European bee-eaters
This case study deals with the northward migration of the
European bee-eater through the Arava Valley in south-
ern Israel. The species is a very common passage migrant
during both autumn and spring throughout the entire
country [32]. In the 2005 and 2006 spring migration sea-
sons, a total of 11 bee-eaters were trapped, marked and
tagged with radio transmitters. Using portable systems,
birds were followed over a total of 810 km during which
their flight mode was established throug h both wing flap
signals and the unique signature of circling flight in the
recorded transmission (for details see [21, 22]; Bee-eater
trapping permits were obtained from the Israeli Nature
and Parks Authority (permits 2005/22055, 2006/25555)
and the experimental procedure was approved by the
Animal Care and Use Committee of the Hebrew Uni-
versity of Jerusalem (permit NS-06-07-2)). Trajectories
were annotated with simulated atmospheric conditions at
appropriately short and small scales using the Regional
Atmospheric Modeling System (RAMS; [33, 34]). The rela-
tionship between bird flight mode (flapping, soaring-
gliding and mixed flight) and atmospheric conditions are
described in [22]. That study confirmed that turbulence
kinetic energy (TKE, in m2/s2), as an indicator of con-
vective updraught intensity in the atmosphere, facilitates
soaring and gliding. In the current study, the relationship
between bird flight mode and the movement path was
estimated by calculating the effects of bird flight mode on
the animal diffusion coefficient in the BBMM [16].
The relation between TKE and flight mode as well as

between flight mode and the diffusion coefficient was
determined by considering only movement stretches with
flapping and pure soaring-gliding modes (hence omitting

the mixed flight modes). The mixed flight mode is highly
variable and biomechanically not as well defined as flap-
ping or soaring-gliding flight.
A univariate logistic model was fitted to estimate the

fraction of soaring flight (s) as a function of TKE. Model
and parameter significance was tested for this model
(using a 0.05 significance level), as well as the overall
classification error. Subsequently, the BBMM was fit-
ted to segments with flapping flight and soaring-gliding
flight separately, resulting in estimates for the diffusion
coefficients for each of these flight modes. Next, the
diffusion coefficient for the mixed flight mode was esti-
mated by weighting the two diffusion coefficients with the
fraction of time spent in each flight mode:

Dm = (1 − s)Df + s · Ds,

where Dm, Df and Ds refer to the diffusion coefficients
of respectively mixed, flapping and soaring-gliding flight.
The fraction s is obtained from the aforementioned logis-
tic model. Using this parameterisation, the complete flight
trajectories are estimated per bird by the BBMM.
In addition to the estimated model coefficients, the

results of this analysis are presented in the form of
probability maps of movement for selected individuals,
showing not only the most likely movement path but
also the uncertainty in this as a function of distance
between observation points and flight mode (as illustrated
in Fig. 4). The R scripts that were used in this analysis are
provided as Additional file 6.

Availability of supporting data
The vervet monkey GPS data set, the bee-eater data set,
and the R scripts used in the analysis are included as
additional files with the article.

Endnote
1For ease of readability we refer to relative speed simply

as speed throughout the article.

Additional files

Additional file 1: The Brownian bridge movement model in relation
to state-space models. Document containing a discussion of the
Brownian bridge movement model in relation to state-space models.

Additional file 2: Vervet monkey data set. GPS data set used in the first
case study.

Additional file 3: Bea-eater data set. Data set used in the second case
study.

Additional file 4: Relative velocity in the Brownian bridge movement
model. Document containing the derivation of the distribution of relative
velocity over time in the Brownian bridge movement model. From this we
derive the distribution of speed and of direction and the spatial
distribution of average speed.

Additional file 5: R scripts (first study). R scripts used in the first case
study.

Additional file 6: R scripts (second study). R scripts used in the second
case study.
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