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Large birds travel farther in homogeneous environments
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1  | INTRODUC TION

Animal	movement	plays	an	 important	role	 in	shaping	a	wide	range	
of	ecological	phenomena,	from	species	survival	to	ecosystem	func‐
tioning	 and	 patterns	 of	 biodiversity	 (Nathan	 et	 al.,	 2008;	 Viana,	
Santamaría,	&	 Figuerola,	 2016).	 As	 animals	move	 across	 the	 land‐
scape,	 they	 interact	with	 individuals	of	 the	same	or	different	 spe‐
cies	(e.g.,	predator–prey	interactions),	carry	out	ecological	functions	
(e.g.,	 seed	 dispersal)	 and	 mediate	 processes	 (e.g.,	 disease	 dynam‐
ics	and	gene	flow)	(Bauer	&	Hoye,	2014).	The	search	for	resources	
is	 one	 underlying	 driver	 of	 animal	 movements	 (La	 Sorte,	 Fink,	

Hochachka,	DeLong,	&	Kelling,	2014;	López‐López,	García‐Ripollés,	
&	Urios,	2014),	where	resources	can	be	food,	water,	cover,	suitable	
breeding	 habitat	 and	 access	 to	mates.	 The	 link	 between	 resource	
abundance	 and	movement	 has	 been	 found	 in	 animal	 home‐range	
patterns,	where	home‐range	size,	or	the	area	used	by	an	animal	to	
reproduce	and	survive,	decreases	with	increasing	density	of	food	re‐
sources	 (Kouba	et	al.,	2017).	The	spatial	arrangement	of	resources	
and	 the	proximity	of	habitats	containing	vital	 resources	 (i.e.,	 land‐
scape	 complementarity)	 are	 also	 important	 factors	 affecting	 ani‐
mal	movements	 (López‐López	et	al.,	2014;	Monsarrat	et	al.,	2013).	
For	 example,	 changes	 in	 resource	 distributions	 can	 lead	 to	 shifts	
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Abstract
Aim:	Animal	movement	is	an	important	determinant	of	individual	survival,	popula‐
tion	dynamics	and	ecosystem	structure	and	function.	Nonetheless,	it	is	still	unclear	
how	local	movements	are	related	to	resource	availability	and	the	spatial	arrange‐
ment	of	resources.	Using	resident	bird	species	and	migratory	bird	species	outside	
the	migratory	period,	we	examined	how	the	distribution	of	resources	affects	the	
movement	patterns	of	both	large	terrestrial	birds	(e.g.,	raptors,	bustards	and	horn‐
bills)	and	waterbirds	(e.g.,	cranes,	storks,	ducks,	geese	and	flamingos).
Location:	Global.
Time period:	2003–2015.
Major taxa studied:	Birds.
Methods:	We	compiled	GPS	tracking	data	for	386	individuals	across	36	bird	spe‐
cies.	We	calculated	the	straight‐line	distance	between	GPS	locations	of	each	indi‐
vidual	at	the	1‐hr	and	10‐day	time‐scales.	For	each	individual	and	time‐scale,	we	
calculated	the	median	and	0.95	quantile	of	displacement.	We	used	linear	mixed‐ef‐
fects	models	to	examine	the	effect	of	the	spatial	arrangement	of	resources,	meas‐
ured	 as	 enhanced	 vegetation	 index	 homogeneity,	 on	 avian	 movements,	 while	
accounting	for	mean	resource	availability,	body	mass,	diet,	flight	type,	migratory	
status	and	taxonomy	and	spatial	autocorrelation.
Results:	We	found	a	significant	effect	of	resource	spatial	arrangement	at	the	1‐hr	
and	 10‐day	 time‐scales.	 On	 average,	 individual	 movements	 were	 seven	 times	
longer	in	environments	with	homogeneously	distributed	resources	compared	with	
areas	of	low	resource	homogeneity.	Contrary	to	previous	work,	we	found	no	sig‐
nificant	effect	of	resource	availability,	diet,	 flight	type,	migratory	status	or	body	
mass	on	the	non‐migratory	movements	of	birds.
Main conclusions:	We	suggest	that	longer	movements	in	homogeneous	environ‐
ments	might	reflect	the	need	for	different	habitat	types	associated	with	foraging	
and	reproduction.	This	highlights	the	 importance	of	 landscape	complementarity,	
where	habitat	patches	within	a	landscape	include	a	range	of	different,	yet	comple‐
mentary	 resources.	As	habitat	homogenization	 increases,	 it	might	 force	birds	 to	
travel	increasingly	longer	distances	to	meet	their	diverse	needs.

K E Y W O R D S

enhanced	vegetation	index,	landscape	complementation,	movement	ecology,	productivity,	
spatial	behaviour,	terrestrial	birds,	waterbirds
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between	movement	strategies	(e.g.,	range	resident	versus	nomadic;	
Reluga	&	Shaw,	2015)	and	affect	the	search	behaviours	of	individu‐
als	while	foraging,	including	step	length	and	path	tortuosity,	depend‐
ing	 on	 how	heterogeneously	 distributed	 the	 resource	 patches	 are	
(Smith,	1974;	Spiegel,	Leu,	Bull,	&	Sih,	2017).

Examining	 the	 link	 between	 avian	movement	 and	 resources	 is	
important	not	only	 for	building	 a	better	 understanding	of	 the	un‐
derlying	drivers	of	animal	movement	(Kleyheeg	et	al.,	2017;	Nathan	
et	al.,	2008),	but	also	for	understanding	how	global	landscape	mod‐
ification	will	 impact	bird	movement	patterns	 (Gilbert	 et	 al.,	 2016).	
Previous	research	on	the	link	between	bird	movement	and	resources	
has	 largely	 focused	 upon	 single	 populations	 and	migratory	move‐
ments	(Kouba	et	al.,	2017;	Thorup	et	al.,	2017),	with	less	attention	
on	how	non‐migratory	movements	are	impacted	by	resources	across	
multiple	species.	Here,	we	aim	to	examine	how	the	distribution	of	re‐
sources	affects	non‐migratory	movement	patterns	at	the	within‐day	
(1	hr)	and	within‐season	(10	day)	scales	across	36	avian	species	and	
five	continents.

We	predicted	shorter	movements	when	resources	are	hetero‐
geneously	distributed	 (i.e.,	 low	homogeneity),	because	heteroge‐
neous	areas	provide	a	diverse	range	of	habitats	(including	diverse	
resources)	within	 a	 smaller	 area	 (Da	 Silveira,	Niebuhr,	Muylaert,	
Ribeiro,	&	Pizo,	2016).	This	means	that	individuals	do	not	need	to	
travel	long	distances	to	fulfil	complementary	resource	needs	(e.g.,	
foraging	versus	reproduction).	We	also	expected	a	stronger	effect	
of	enhanced	vegetation	index	(EVI)	homogeneity	at	the	1‐hr	scale	
(i.e.,	a	steeper	slope),	because	hourly	movements	are	less	likely	to	
include	longer	inter‐patch	movements	found	at	the	10‐day	scale.	
Therefore,	 changes	 to	 the	 landscape	 (e.g.,	 homogenization)	 that	
result	 in	resources	being	farther	apart	would	result	 in	birds	cov‐
ering	longer	distances	more	frequently	to	find	the	resources	they	
need.

In	 this	work,	we	 focused	 on	 data‐rich,	 large	 species,	 including	
terrestrial	birds	(e.g.,	raptors,	hornbills	and	bustards)	and	waterbirds	
(e.g.,	ducks,	geese,	storks,	cranes	and	flamingos).	We	used	the	EVI,	
which	measures	vegetation	productivity,	as	a	satellite‐derived	proxy	
for	 resources.	Satellite‐based	vegetation	 indices	have	been	shown	
to	be	good	proxies	for	a	variety	of	resources	and	have	been	used	to	
predict	bird	diversity	patterns	(Tuanmu	&	Jetz,	2015)	and	movement	
(La	Sorte	et	al.,	2014).	As	a	measure	for	the	spatial	arrangement	of	
resources,	we	used	a	recently	published	metric	of	EVI	homogeneity	
that	 estimates	 the	 similarity	 of	 EVI	 between	 adjacent	 1‐km	pixels	
(Tuanmu	&	Jetz,	2015).	With	this	measure,	any	landscape	and	habitat	
(e.g.,	 grasslands,	 forests	or	 agricultural	 lands)	 is	 considered	homo‐
geneous	if	there	are	no	changes	or	few	changes	of	habitat	type	at	
the	1‐km	scale.

In	 addition	 to	 the	distribution	of	 resources,	we	 included	other	
covariates	 that	 affect	 avian	 movements,	 including	 mean	 resource	
availability,	 body	mass,	 diet,	 flight	 type	 and	migratory	 status.	We	
predicted	shorter	1‐hr	and	10‐day	movements	when	food	resources	
are	 in	 high	 abundance	 (i.e.,	 high	 EVI),	 because	 animals	 can	 ful‐
fil	 their	 requirements	 (e.g.,	 food	and	 shelter)	within	a	 smaller	 area	
(Gilbert	 et	 al.,	 2016).	 Allometric	 scaling	 relationships	 have	 shown	

that	 animals	 of	 greater	 body	 size	 usually	 fly	 farther	 owing	 to	 en‐
ergy	efficiency,	 increased	flight	speeds	and	 increased	resource	re‐
quirements	(Alerstam,	Rosén,	Bäckman,	Ericson,	&	Hellgren,	2007).	
In	 addition,	differences	 in	 the	abundance	and	distribution	of	 food	
resources	across	different	diet	categories	should	translate	into	dif‐
ferent	movement	patterns	across	carnivores,	herbivores	and	omni‐
vores	(Alerstam	et	al.,	2007;	Tamburello,	Côté,	&	Dulvy,	2015).	We	
controlled	 for	 these	differences	by	 including	diet	as	a	covariate	 in	
our	 analysis.	 Finally,	 there	 are	 different	 energetic	 costs	 and	 flight	
speeds	associated	with	flapping	versus	soaring	flight.	Flapping	flight	
is	faster,	but	soaring	flight	is	more	energetically	efficient,	which	gen‐
erally	leads	to	longer	flight	distances	(Hedenstrom,	1993;	Watanabe,	
2016).	For	this	reason,	we	included	flight	type	in	our	analyses,	with	
the	expectation	 that	soaring	birds	would	 fly	 longer	distances	over	
short	and	long	time	periods.	We	also	included	migratory	status	(i.e.,	
migratory	or	non‐migratory)	as	a	covariate	in	our	models	to	account	
for	any	potential	differences	in	movement	distances	across	the	two	
strategies	(Alerstam	et	al.,	2007).

2  | METHODS

2.1 | Data

We	 compiled	 GPS	 tracking	 data	 for	 36	 terrestrial	 and	 freshwater	
bird	species	between	2003	and	2015,	spanning	4,638,594	locations	
across	386	 individuals	and	five	continents	 (Figure	1).	The	majority	
of	the	data	were	obtained	from	Movebank	(https://www.movebank.
org/)	and	the	Movebank	Data	Repository	(https://www.datareposi‐
tory.movebank.org/)	or	were	directly	contributed	by	co‐authors	(see	
Supporting	Information	Appendix	S1).

2.2 | Movement metric

Our	movement	metric	was	displacement,	which	 is	the	straight‐line	
distance	between	two	locations.	We	chose	to	examine	avian	move‐
ments	 at	 the	 1‐hr	 and	 10‐day	 scales	 because	 they	 enabled	 us	 to	
examine	 short‐	 (i.e.,	within‐day)	 and	 long‐term	 (i.e.,	within‐season)	
movements	and	maximized	the	contrast	between	scales	while	pre‐
serving	sufficient	sample	sizes	at	the	species	and	individual	levels.	To	
standardize	the	sampling	frequency	among	studies,	we	subsampled	
location	data	so	that	intervals	between	consecutive	locations	were	
either	1	hr	or	10	days.	We	started	the	subsampling	algorithm	from	
the	first	 location	of	each	individual,	and	the	subsampling	precision	
was	set	 to	 the	 inter‐location	 interval	±	4%	 (e.g.,	 for	 the	1‐hr	scale,	
resulting	in	inter‐location	intervals	varying	between	57	and	62	min).	
There	were	some	individuals	that	did	not	have	data	for	both	the	1‐
hr	and	10‐day	scales	owing	to	the	different	tracking	regimes	of	the	
data,	where	some	individuals	had	data	every	15	min,	whereas	oth‐
ers	had	only	one	location	per	day.	This	resulted	in	some	individuals	
not	having	 the	 fine‐scale	data	 for	 the	1‐hr	scale	analysis.	Some	of	
the	 individuals	were	 tracked	with	 tags	 that	were	 switched	off	 for	
set	periods	of	the	day	(e.g.,	nights)	to	reduce	battery	use.	To	avoid	
any	 bias	 in	 the	 sampling	 at	 the	 1‐hr	 time‐scale,	 we	 included	 only	

https://www.movebank.org/
https://www.movebank.org/
https://www.datarepository.movebank.org/
https://www.datarepository.movebank.org/
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locations	that	occurred	between	06:00	a.m.	and	6:00	p.m.	local	time,	
because	this	enabled	us	to	include	movements	between	the	feeding	
area	and	the	roost,	while	avoiding	the	roosting	period	when	birds	are	
likely	to	be	more	settled,	particularly	in	the	winter	months.	This	also	
meant	 that	we	 included	only	 birds	with	 diurnal	movement	 behav‐
iours.	To	exclude	migratory	periods,	we	 included	only	species	that	
were	 non‐migratory	 (all	 seasons)	 or	migratory	 species	 outside	 the	
migratory	period	(i.e.,	summer	and	winter	movements	only).	Summer	
and	winter	categories	were	based	on	month	and	 latitude.	Summer	
included	June,	July	and	August	(Northern	Hemisphere;	latitude	>	0)	
or	December,	January	and	February	(Southern	Hemisphere;	latitude	
<	0).	Winter	 included	December,	 January	 and	February	 (Northern	
Hemisphere)	or	June,	July	and	August	 (Southern	Hemisphere).	We	
categorized	 species	 as	 non‐migratory	 (n	=	27)	 or	 migratory	 (n	=	9)	
based	 on	 Eyres,	 Böhning‐Gaese,	 and	 Fritz	 (2017),	 who	 broadly	
categorized	the	movement	behaviour	of	10,443	bird	species	as	di‐
rectional	migrant	 (seasonal	movements	with	 a	 specific	 geographi‐
cal	 direction),	 dispersive	 migrant	 (seasonal	 movements	 without	 a	
specific	geographical	direction),	nomadic	(irregular	movements,	not	
seasonal	 or	 with	 geographical	 direction)	 and	 resident	 (sedentary	
movements).	We	defined	species	as	migratory	if	they	were	classified	
as	 ‘directional	migratory’	 or	 ‘dispersive	migratory’	 and	 non‐migra‐
tory	if	classified	as	‘resident’.	To	ensure	that	we	did	not	include	the	
beginning	or	end	of	migration	during	the	summer	or	winter	for	each	
individual,	we	calculated	the	centroid	of	the	densest	cluster	of	points	
for	 each	 season.	Clusters	were	 identified	based	on	 kernel	 density	
estimation,	where	a	cluster	is	defined	by	the	local	maximum	of	the	
estimated	 density	 function	 (see	 Supporting	 Information	Appendix	
S2	for	R	package	details).	We	then	calculated	a	circle	centred	on	the	
cluster	centroid	with	a	radius	equal	to	the	maximal	displacement	dis‐
tance	calculated	 for	 that	 individual	 and	 time‐scale,	with	a	minimal	
radius	size	of	30	km	for	species	with	very	short	maximal	displace‐
ments.	We	included	only	 locations	that	occurred	within	this	circle,	
and	we	did	this	for	each	season	separately	to	avoid	tracks	that	exited	
and	re‐entered	the	circle	(see	Supporting	Information	Appendix	S3	
for	a	graphical	representation	of	this	methodology).

For	 the	 remaining	 1‐hr	 and	10‐day	 displacement	 data,	we	 cal‐
culated	 the	 geodesic	 distance	 between	 the	 subsampled	 locations.	
We	removed	outliers	based	on	maximal	movement	speeds	(>	23	m/s;	
Alerstam	 et	 al.,	 2007)	 and	 removed	 any	 stationary	 locations	 (i.e.,	
displacements	 <	10	m,	 based	 on	 average	GPS	 error).	We	 removed	
stationary	locations	because	we	wanted	to	focus	on	periods	when	
individuals	were	moving	rather	than	during	stationary	periods,	such	
as	 roosting	or	nesting.	We	then	calculated	two	response	variables	
for	each	individual:	the	median	displacement	distance	and	the	0.95	
quantile	displacement	distance	(i.e.,	long‐distance	movements).	We	
log10‐transformed	 the	 displacement	 values	 to	meet	 the	 normality	
assumption	of	the	distribution	of	residuals	from	the	linear	mixed‐ef‐
fects	models.

2.3 | Environment and life history data

We	annotated	each	GPS	location	with	the	mean	EVI	across	2001–
2012	and	EVI	homogeneity	across	2001–2005	using	publicly	avail‐
able	global	datasets	with	1‐km	resolution	(Supporting	Information	
Appendix	S4:	Hengl,	Kilibarda,	Carvalho‐Ribeiro,	&	Reuter,	2015;	
Tuanmu	&	Jetz,	2015).	The	mean	EVI	data	were	calculated	using	
monthly	 MODIS	 EVI	 time‐series	 data	 (MOD13A3;	 Hengl	 et	 al.,	
2015),	 and	 the	 EVI	 homogneity	 data	 were	 calculated	 using	 the	
16‐day	MODIS	EVI	time‐series	data	(MOD13Q1;	Tuanmu	&	Jetz,	
2015).	The	EVI	is	a	modified	version	of	the	normalized	difference	
vegetation	index	(NDVI),	which	is	designed	to	deal	with	structural	
variations	 in	 high‐biomass	 regions	 and	 is	 able	 to	 decouple	 the	
canopy	background	signal	from	atmospheric	influences	(Huete	et	
al.,	2002).	This	means	that	EVI	is	more	sensitive	to	differences	in	
heavily	 vegetated	 areas	 (i.e.,	 when	 vegetation	 is	 dense,	 EVI	 can	
differentiate	 between	 different	 vegetation	 types)	 owing	 to	 the	
correction	for	atmospheric	haze	and	the	land	surface	beneath	the	
vegetation.	The	EVI	homogeneity	metric	was	originally	developed	
for	examining	how	bird	species	richness	was	related	to	habitat	het‐
erogeneity	(see	Tuanmu	&	Jetz,	2015)	and	thus	provided	an	ideal	
and	tested	dataset	to	examine	how	habitat	heterogeneity	impacts	

F I G U R E  1  Global	patterns	of	
enhanced	vegetation	index	(EVI)	
homogeneity	spanning	from	low	(dark	
blue)	to	high	(yellow) 
Note.	The	pink	circles	represent	the	
average	longitude	and	latitude	position	
for	each	of	the	386	individuals	across	
36	species	included	in	the	study −150 −100 −50 0 50 100 150
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avian	movements.	 The	 EVI	 homogeneity	 is	 a	 proxy	 for	 the	 spa‐
tial	distribution	of	vegetation	productivity	and	reflects	fine‐grain	
land‐cover	heterogeneity.	It	is	calculated	based	on	the	similarity	of	
EVI	values	within	a	set	neighbourhood	(for	additional	details,	see	
Tuanmu	&	Jetz,	2015).	The	EVI	and	EVI	homogeneity	data	are	ter‐
restrial‐based	measures,	where	cells	that	included	water	were	set	
as	‘NA’	and	water	was,	therefore,	excluded	from	our	analyses.	We	
assume	that	EVI	captures	the	resources	used	by	waterbirds	based	
on	previous	work	(Henry,	Ament,	&	Cumming,	2016),	although	we	
note	 that	waterbodies	 are	 also	 an	 important	 resource	 that	were	
not	included	in	our	analyses.	To	examine	the	average	EVI	and	EVI	
homogeneity	experienced	by	each	individual,	we	calculated	mean	
values	 for	 each	 individual	 using	 the	 annotated	 EVI	 and	 EVI	 ho‐
mogeneity	values.	We	also	included	species‐level	traits,	including	
body	mass	from	the	EltonTraits	1.0	database	(Wilman	et	al.,	2014),	
diet	[carnivore	(n	=	20),	herbivore	(n	=	14)	or	omnivore	(n	=	2)]	and	
flight	type	[soaring	and	flapping	(n	=	18)	or	flapping	only	(n	=	18)].	
In	the	case	of	flight	type,	soaring	species	are	able	to	use	both	flap‐
ping	 and	 soaring	 flight.	 Body	mass	 values	 ranged	 from	600	g	 to	
9.5	kg	and	were	log10‐transformed	before	analyses.

Lastly,	to	attempt	to	account	for	the	EVI	and	EVI	homogeneity	
values	experienced	by	individuals	while	flying,	we	also	ran	the	mod‐
els	 using	 the	weighted	mean	 values	 of	 EVI	 and	EVI	 homogeneity.	
Weighted	 mean	 values	 were	 calculated	 along	 each	 displacement	
segment	 (i.e.,	 a	 straight‐line	 distance	 between	 two	 sequential	 lo‐
cations),	where	weights	were	based	on	 the	proportion	of	 the	seg‐
ment	that	occurred	in	each	pixel.	For	the	final	analysis,	we	averaged	
these	weighted	average	EVI	and	EVI	homogeneity	values	for	each	
individual.

2.4 | Analyses

Our	final	database	(see	Supporting	Information	Appendices	S5	and	
S6)	included	individual	median	and	0.95	quantile	displacement	val‐
ues	for	1‐hr	and	10‐day	displacements,	the	associated	mean	values	
for	body	mass,	EVI	and	EVI	homogeneity,	and	diet,	flight	type	and	
migratory	status	categories.	We	included	only	individuals	that	had	
tracking	data	for	a	minimum	of	1	week	of	hourly	locations	or	60	days	
of	10‐day	locations.	We	ran	four	linear	mixed‐effects	models:	two	
for	each	time‐scale,	one	with	 the	median	and	the	other	with	 the	
0.95	 quantile	 displacement	 distances	 as	 the	 dependent	 variable,	
and	body	mass,	EVI,	EVI	homogeneity,	flight	type	and	diet	as	the	
fixed	effects.	We	included	a	nested	random	effect	to	account	for	
taxonomy	(i.e.,	order/family/genus/species).	Given	that	the	track‐
ing	 data	 are	 spatially	 autocorrelated,	 we	 accounted	 for	 this	 cor‐
relation	in	the	regression	models	using	a	Gaussian	function	based	
on	the	distances	between	the	mean	longitude	and	latitude	of	each	
individual.	For	each	model,	we	checked	the	residuals	for	normality	
(i.e.,	Q–Q	plots).	We	examined	the	collinearity	among	variables	and	
found	 that	 all	 correlation	 coefficients	 among	 the	 predictor	 vari‐
ables	were	 |r|	≤	 .53,	which	 is	below	the	common	cut‐off	value	of	
0.7	 (Dormann	et	al.,	2013).	We	also	checked	for	multicollinearity	
using	variance	inflation	factors	(VIFs)	and	found	that	all	VIFs	were	

<	2.0,	which	is	below	the	commonly	accepted	cut‐off	value	of	4.0	
(Zuur,	Ieno,	&	Elphick,	2010).	We	examined	the	goodness‐of‐fit	for	
each	model	using	the	marginal	R2	(variance	explained	by	the	fixed	
effects)	and	conditional	R2	 (variance	explained	by	both	fixed	and	
random	 factors)	 values	 for	 each	model	 (Nakagawa	&	 Schielzeth,	
2013).	We	calculated	the	model	predictions	using	the	mean	value	
of	the	continuous	predictors	 (e.g.,	mass	and	EVI)	and	varying	the	
covariate	 of	 interest	 (e.g.,	 EVI	 homogeneity).	We	 chose	 to	make	
predictions	 for	 carnivorous	 soaring	migrants	 because	 this	 is	 the	
predominant	 combination	 in	our	data.	We	 tested	 for	differences	
between	 the	 slope	 estimates	 for	 EVI	 homogeneity	 for	 the	 1‐hr	
models,	the	10‐day	models	and	between	the	1‐hr	and	10‐day	mod‐
els.	We	 did	 this	 using	 the	 difference	 between	 EVI	 homogeneity	
coefficient	estimates	and	the	associated	confidence	intervals	cal‐
culated	 via	 error	 propagation	 based	on	Clark	 (2007:	 see	 chapter	
5.6.2	and	appendix	D.5.3).	The	EVI	homogeneity	slope	estimates	
were	deemed	not	 significant	when	 the	95%	confidence	 intervals	
overlapped	zero.	All	analyses	were	performed	in	R	v.3.4.3	(R	Core	
Team,	2017),	and	details	on	 the	R	packages	used	 in	 the	analyses	
can	be	found	in	the	Supporting	Information	(Appendix	S2).

3  | RESULTS

We	found	a	significant	positive	relationship	between	displacement	
and	 EVI	 homogeneity	 at	 both	 the	 1‐hr	 and	 10‐day	 time‐scales	
(Table	1;	Figures	2	and	3).	The	results	were	similar	for	the	weighted	
mean	EVI	and	EVI	homogeneity	analyses	(Supporting	Information	
Appendix	S7).	On	average,	displacements	were	up	to	seven	times	
longer	in	areas	with	high	EVI	homogeneity	(Figure	2),	such	as	de‐
sert	 regions	 (the	 maximal	 EVI	 homogeneity	 value	 was	 .85).	 For	
example,	model	predictions	for	1‐hr	median	displacements	for	car‐
nivorous	soaring	individuals	were	1.02	km	(±	SE	1.63	km,	range	=	
0.62–1.65	km,	n	=	168)	 in	 areas	 of	 high	 EVI	 homogeneity	 versus	
0.14	km	(±	SE	1.47	km,	range	=	0.10–0.21	km,	n	=	168)	in	areas	of	
low	EVI	homogeneity	(Figure	2a).	The	1‐hr	long‐distance	displace‐
ments	 for	 carnivorous	 soaring	 individuals	 were	 10.20	km	 (±	SE 
1.57	km,	range	=	6.48–16.07	km,	n = 168)	in	areas	of	high	EVI	ho‐
mogeneity	 versus	2.40	km	 (±	SE	 1.45	km,	 range	=	1.66–3.48	km,	
n	=	168)	in	areas	of	low	EVI	homogeneity	(Figure	2a).

There	was	 no	 significant	 difference	 between	 the	 slope	 coeffi‐
cients	 of	 the	 1‐hr	 and	 10‐day	 displacements	 for	 both	 the	median	
and	 long‐distance	 models	 (Supporting	 Information	 Appendix	 S8).	
Contrary	to	our	predictions,	these	results	suggest	that	movements	at	
both	time‐scales	were	equally	sensitive	to	decreasing	homogeneity.

Our	models	explained	52–71%	of	the	variation	in	avian	displace‐
ments	at	the	1‐hr	and	10‐day	time‐scales	when	accounting	for	both	
random	 and	 fixed	 effects,	 and	 10–38%	 of	 the	 variation	when	 ac‐
counting	for	the	fixed	effects	alone	(i.e.,	body	mass,	mean	EVI,	EVI	
homogeneity,	diet,	flight	type	and	migratory	status;	Table	1).	We	did	
not	find	any	significant	effects	of	mean	EVI,	body	mass,	diet,	flight	
type	or	migratory	status	on	median	or	long‐distance	displacements	
at	either	time‐scale	(Table	1;	Figure	3).
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4  | DISCUSSION

We	have	shown	that	EVI	homogeneity	is	a	key	factor	associated	with	
avian	movements,	where	movements	were	on	average	seven	times	
longer	 in	 areas	 of	 high	 EVI	 homogeneity	 (e.g.,	 deserts)	 compared	
with	 areas	 of	 low	 EVI	 homogeneity	 (e.g.,	 mixed	 broadleaved	 and	
needle‐leaved	forests).	The	increase	in	displacement	with	increasing	
homogeneity	is	likely	to	be	a	reflection	of	the	different	habitat	types	
(including	 microhabitat	 heterogeneity)	 required	 for	 survival	 (e.g.,	

food	resources	or	tree	cover	for	predator	avoidance)	and	reproduc‐
tion	 (e.g.,	 nesting	 sites).	 Some	bird	 species	 (e.g.,	 upland	 sandpiper,	
Bartramia longicauda)	have	larger	home‐range	sizes	in	homogeneous	
environments,	such	as	pastures	or	grasslands,	because	the	structure	
of	 these	habitats	does	not	meet	all	of	 the	biological	 requirements	
of	 the	 bird,	 meaning	 that	 they	 increase	 their	 ranging	 behaviour	
until	their	requirements	are	met	 (Sandercock	et	al.,	2015;	Stanton,	
Kesler,	&	Thompson,	2014).	Therefore,	landscape	complementation,	
where	 a	 single	 landscape	 includes	 habitat	 patches	 with	 different	

TA B L E  1  Model	coefficients,	R2,	p‐values	and	sample	sizes	of	linear	mixed‐effects	models	predicting	the	median	and	0.95	quantile	of	
individual	displacements	for	1‐	and	10‐day	time‐scales

1 hr 10 days

Median 0.95 quantile Median 0.95 quantile

Estimate (SE) p Estimate (SE) p Estimate (SE) p Estimate (SE) p

Mass 0.385	(0.265) .283 0.175	(0.174) .419 0.155	(0.237) .532 −0.427	(0.264) .145

EVI −0.58	(0.436) .185 −0.053	(0.328) .872 −0.225	(0.409) .582 0.795	(0.484) .102

EVI_Homogeneity 1.198 (0.323) < .001 0.881 (0.23) < .001 2.427 (0.311) < .001 2.292 (0.434) < .001

Diet	(H) 0.088	(0.33) .807 −0.065	(0.272) .827 0.056	(0.302) .857 0.017	(0.403) .968

Diet	(O) 0.129	(0.56) .833 −0.654	(0.395) .196 −0.359	(0.459) .456 −0.908	(0.553) .139

FlightT_Soar 0.469	(0.32) .281 0.195	(0.224) .476 0.123	(0.315) .723 −0.202	(0.419) .663

MigStatus_NM 0.231	(0.148) .259 0.213	(0.099) .164 0.252	(0.195) .232 0.082	(0.206) .699

R2 marginal .376 .360 .261 .102

R2	conditional .696 .706 .518 .566

Species 19 35

Individuals 168 356

Note.	Predictor	variables	 included	fixed	effects	for	body	mass	 (Mass),	enhanced	vegetation	 index	 (EVI),	EVI	homogeneity	 (EVI_Homogeneity),	diet	
(H	=	herbivore	and	O	=	omnivore	coefficients),	flight	type	(FlightT;	soaring	coefficient	values	shown	here)	and	migratory	status	(MigStatus_NM;	non‐
migratory	coefficient	values	shown	here).	The	model	also	included	a	nested	random	effect	accounting	for	the	taxonomy,	and	a	Gaussian	spatial	auto‐
correlation	structure.	Bold	values	indicate	significance	at	p	<	.05.

F I G U R E  2  Avian	(a)	1‐hr	and	(b)	10‐day	median	(0.5	quantile;	yellow)	and	long‐distance	(0.95	quantile;	purple)	displacements	with	
increasing	enhanced	vegetation	index	(EVI)	homogeneity	 
Note.	Plots	include	regression	lines	from	the	linear	mixed‐effects	models	and	95%	confidence	intervals.	An	EVI	homogeneity	value	of	zero	
indicates	areas	of	low	homogeneity,	and	values	of	0.8	represent	areas	of	high	homogeneity	at	a	local	scale

(a) (b)
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but	complementary	resources	within	close	proximity,	is	likely	to	be	
an	important	feature	for	shaping	avian	movements	(Mueller,	Selva,	
Pugacewicz,	&	Prins,	 2009).	 The	 link	between	movement	 and	EVI	
homogeneity	might	also	suggest	that	it	is	important	to	maintain	land‐
scape	complementarity	 in	human‐modified	areas	that	have	shifted	
from	heterogeneous	 to	homogeneous	 landscapes	 (e.g.,	 croplands),	
which	might	reduce	the	distances	covered	by	individual	birds	and,	in	
turn,	the	potential	negative	effects	of	these	longer	travel	distances	
(e.g.,	increased	energetic	costs).

Interestingly,	 we	 did	 not	 find	 a	 significant	 effect	 of	 the	mean	
abundance	of	 resources,	 contrary	 to	our	predictions	 and	previous	
research	on	single	populations	of	birds	(Dodge	et	al.,	2014;	Stanton	
et	al.,	2014).	This	difference	could	be	attributable	to	previous	stud‐
ies	focusing	on	long‐distance	movements,	such	as	migration,	or	not	
including	 the	 effect	 of	 spatial	 arrangement	 of	 resources,	 or	 both.	
We	can	rule	out	the	possibility	of	spatial	arrangement	of	resources	
masking	the	effect	of	EVI,	because	we	ran	our	models	excluding	EVI	
homogeneity	and	still	found	no	significant	effect	of	EVI	(Supporting	
Information	 Appendix	 S9).	 Although	 vegetation	 indices,	 such	 as	
EVI,	 have	 been	 shown	 to	 underlie	 bird	 behaviour	 (La	 Sorte,	 Fink,	
Hochachka,	DeLong,	&	Kelling,	2013)	and	diversity	patterns	(Tuanmu	
&	Jetz,	2015),	it	may	also	be	the	case	that	mean	EVI	is	not	the	best	
proxy	of	resources	used	by	birds,	particularly	on	a	small	scale	(e.g.,	
daily	movements).	It	is	assumed	that	vegetation	indices	provide	in‐
formation	across	several	diet	categories;	however,	 they	might	per‐
form	poorly	 for	non‐herbivore	 species,	 specifically	 those	 that	 rely	
on	scavenging.	We	also	ran	our	models	with	an	interaction	term	be‐
tween	mean	EVI	and	diet	to	test	for	differences	in	the	response	to	
EVI	across	diet	categories	 (Supporting	 Information	Appendix	S10).	
The	interaction	term	was	significant	only	for	the	long‐distance	10‐
day	 displacements,	 suggesting	 that	we	were	 unable	 to	 detect	 dif‐
ferences	between	diet	categories	for	hourly	movements	using	EVI	

at	a	1‐km	resolution.	We	also	note	that	we	did	not	account	for	the	
seasonal	variation	 in	 resource	availability,	which	may	 impact	avian	
movements.	 Our	 study	 focused	 on	 terrestrial	 resources	 that	 are	
likely	 to	 capture	 some	 of	 the	 resources	 used	 by	 waterbirds	 (e.g.,	
crops),	but	future	studies	should	investigate	the	role	of	aquatic	re‐
sources	 on	waterbird	movements.	Overall,	 productivity	measures,	
such	as	EVI,	are	currently	the	best	proxy	for	food	resources	avail‐
able,	and	our	results	indicate	that	EVI	homogeneity	is	a	potentially	
useful	proxy	of	the	spatial	arrangement	of	resources	and	has	an	im‐
portant	role	in	shaping	avian	foraging	movements.

Also	contrary	to	our	predictions,	we	did	not	find	a	significant	
effect	of	body	mass	on	displacements.	The	lack	of	relationship	be‐
tween	displacement	and	mass	could	also	be	a	result	of	the	limited	
range	of	body	mass	 included	 in	our	database,	 spanning	600	g	 to	
9.5	kg,	and	the	low	sample	size	of	small	birds	included	in	our	study.	
This	 is	because	of	 the	 limited	availability	of	high‐resolution	data	
for	 terrestrial	birds	<	250	g,	owing	 to	 the	weight	of	current	GPS	
tracking	 technologies	and	the	 limited	battery	 life	 for	smaller	de‐
vices	(López‐López,	2016).	Based	on	allometric	relationships,	birds	
with	smaller	body	masses	(e.g.,	<	600	g)	should	travel	shorter	dis‐
tances	and	use	a	smaller	area	based	on	reduced	resource	require‐
ments,	energy	efficiency	and	flight	speeds	in	comparison	to	larger	
species	(Alerstam	et	al.,	2007).	As	tracking	technologies	improve,	
it	will	become	possible	to	track	smaller	species	and	then	re‐exam‐
ine	this	relationship	across	a	broader	range	of	avian	body	mass.

Lastly,	we	did	not	find	any	significant	differences	between	soar‐
ing/flapping	 flight	and	 flapping‐only	 flight.	 It	 is	possible	 that	 flight	
strategy	has	a	smaller	impact	on	foraging	movements	compared	with	
migratory	movements,	where	the	trade‐off	between	flight	distance	
and	energetic	costs	is	greater	(Hedenstrom,	1993;	Watanabe,	2016).	
Alternatively,	it	could	be	that	flight	behaviours,	such	as	thermal	soar‐
ing,	were	 not	 captured	 at	 the	 temporal	 resolution	 of	 the	 tracking	

F I G U R E  3  Model	coefficients	
(±	95%	confidence	intervals)	of	linear	
mixed‐effects	models	predicting	avian	
displacements	using:	(a)	body	mass;	(b)	
mean	enhanced	vegetation	index	(EVI);	(c)	
EVI	homogeneity;	(d)	flight	type	(soaring);	
and	(e)	migratory	status	(non‐migratory) 
Note.Models	were	run	for	the	median	
(yellow)	and	long‐distance	(0.95	quantile;	
purple)	displacements	of	each	individual,	
calculated	across	different	time‐scales.	
When	the	error	bars	cross	the	horizontal	
line,	the	effect	is	not	significant.	See	Table	
1	for	details

(a)

(d) (e)

(b) (c)

Time-scale Time-scale Time-scale

Time-scale Time-scale
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data	used	and	our	restriction	to	examining	two‐dimensional	move‐
ments	(i.e.,	only	longitude	and	latitude).	This	means	that	individuals	
that	use	thermal	soaring	could	be	covering	longer	distances	that	we	
are	not	able	 to	detect	with	our	current	analysis	 (Tamburello	et	al.,	
2015).	Owing	 to	 the	disproportionate	 increase	 in	 flight	 costs	with	
body	mass	for	flapping	flyers,	flapping	flight	is	more	common	in	small	
species	(Hedenstrom,	1993),	and	with	the	inclusion	of	these	species	
we	 might	 see	 more	 divergent	 displacement	 behaviours	 between	
these	flying	strategies.	It	is	also	possible	that	the	size	of	the	smaller	
birds	in	our	dataset	that	are	characterized	as	active	fliers	(i.e.,	flap‐
ping	flight)	use	this	strategy	for	only	short	periods	because	they	are	
still	 too	 large	to	maintain	 this	 flight	strategy	energetically	 for	 long	
periods,	 thus	preventing	us	 from	detecting	any	differences	among	
strategies	in	our	analysis.

The	random	effect	 (i.e.,	 taxonomy)	explained	a	 large	portion	of	
the	 variance	 in	 avian	 movements	 (c.	40–50%).	 Previous	 work	 has	
examined	species‐level	differences	in	movement	patterns,	including	
differences	 in	home‐range	size	 (Haskell,	Ritchie,	&	Olff,	2002)	and	
migration	distances/strategies	 (Alerstam,	Hedenström,	&	Åkesson,	
2003;	La	Sorte	et	al.,	2013)	based	on	species‐level	traits	(e.g.,	body	
size	 and	 diet).	 Some	of	 the	 variation	 among	 individuals	within	 the	
same	 species	 is	 probably	 attributable	 to	 sex,	 because	 males	 and	
females	 have	 different	 movement	 patterns	 during	 brood	 rearing	
(Hernández‐Pliego,	 Rodríguez,	 &	 Bustamante,	 2017).	 In	 addition,	
feather	 moult	 (i.e.,	 feathers	 being	 shed	 and	 regrown)	 may	 impact	
avian	 movements,	 including	 periods	 of	 flightlessness	 (e.g.,	 cranes	
and	 waterfowl	 post‐breeding)	 and	 reduced	 aerodynamic	 perfor‐
mance	 of	 the	 wings	 (e.g.,	 Falco peregrinus;	 Flint	 &	Meixell,	 2017).	
Variation	 in	moult	patterns	and	their	consequences	for	bird	move‐
ment	 between	 species,	 populations	 and	 individuals	were	 not	 con‐
sidered	here	owing	to	lack	of	detailed	moult	data	when	movement	
was	 recorded.	Reproduction	 is	another	vital	part	of	an	 individual’s	
life	history	and	often	involves	a	shift	in	movement	patterns	owing	to	
the	distribution	of	mates,	lekking	sites	or	availability	of	nesting	sites	
or	food	resources	(Cecere,	Gaibani,	&	Imperio,	2014;	Rösner,	Brandl,	
Segelbacher,	Lorenc,	&	Müller,	2014).	Other	environmental	variables,	
such	as	wind	speed	and	direction,	were	not	included	in	our	analyses,	
but	might	also	account	for	some	of	the	unexplained	variance	of	our	
models	(Harel,	Horvitz,	&	Nathan,	2016;	Mellone	et	al.,	2015).

Another	potential	factor	accounting	for	the	within‐species	vari‐
ation	 in	 avian	 displacements	 is	 related	 animal	 personality,	 where	
individuals	 with	 different	 personalities	 are	 likely	 to	 differ	 in	 their	
movement	strategies	(Patrick,	Pinaud,	&	Weimerskirch,	2017;	Spiegel	
et	al.,	2017).	For	example,	movement	patterns	are	expected	to	differ	
according	to	the	boldness	of	individuals,	because	bolder	individuals	
may	demonstrate	more	exploratory	movements	and	use	more	risky	
environments	(Spiegel	et	al.,	2017).	This	could	also	be	related	to	age	
and	experience,	because	individuals	with	more	experience	might	be	
less	likely	to	inhabit	risky	environments	and	might	already	have	iden‐
tified	where	 the	 reliable	 food	patches	 are,	 contributing	 further	 to	
intraspecific	variation	(López‐López	et	al.,	2014).

A	caveat	of	our	analysis	 is	 the	assumption	 that	our	calculation	
of	 the	 EVI	 and	 EVI	 homogeneity	 values	 based	 on	 endpoints	 of	

displacements	represent	the	mean	resources	or	resource	homoge‐
neity	 experienced	by	 the	 individual	while	moving.	 In	 this	 context,	
without	 high‐resolution	 data	 collected	 over	 long	 durations,	 it	 will	
be	difficult	to	discern	exactly	what	the	individual	experienced	over	
extended	periods.	Nevertheless,	our	 results	clearly	demonstrate	a	
relationship	between	resources	and	avian	movements,	because	we	
found	similar	results	using	models	based	only	on	the	end	coordinates	
of	 displacement	 segments	 and	 models	 using	 the	 weighted	 mean	
along	 the	 entire	 straight‐line	 displacement	 segments	 (Supporting	
Information	 Appendix	 S7).	 As	 higher‐resolution	 tracking	 data	 be‐
come	more	 common,	 future	 studies	 can	begin	 to	 discern	 foraging	
behaviours	from	movement	tracks	and	examine	foraging	patterns	in	
response	to	resources	at	a	macroecological	scale.

5  | CONCLUSION

In	 conclusion,	 our	 study	 is	 the	 first	 to	 examine	 the	 relationship	
between	 the	 distribution	 of	 resources	 and	 non‐migratory	 avian	
movement	 patterns	 across	multiple	 species	 and	 regions.	We	have	
demonstrated	 the	 importance	 of	 resource	 spatial	 distribution	 on	
shaping	movements,	highlighting	the	possible	effects	of	 landscape	
homogenization,	where	individuals	may	need	to	fly	farther	to	meet	
their	ecological	requirements.	 It	 is	possible	that	continuing	habitat	
homogenization	 (e.g.,	 intensification	 of	 agriculture)	 in	 landscapes	
with	 a	 naturally	 high	 diversity	 of	 habitats	 will	 have	 negative	 im‐
pacts	 on	 the	 abundance	 and	 diversity	 of	 birds	 (Jerrentrup	 et	 al.,	
2017)	owing	to	the	 loss	of	complementary	habitats.	This	might,	 in	
turn,	 result	 in	 greater	movement	 requirements	 and	 higher	 energy	
expenditure.
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