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Abstract
Environmental conditions, including weather, influence organisms in a variety of ways. 
Specifically, animal males and females might be affected differently by ambient tempera-
tures that vary in time and space. In this study, we explored the effect of elevation, which 
strongly determines ambient temperatures, on the speed of moult of the wing’s flight feath-
ers in the Eurasian Blackbird (Turdus merula). Differences in moult speed may alter the 
wing’s surface area during the moulting process and hence may influence flight perfor-
mance, including the ability to escape from predators. Sampling elevations were catego-
rized to locations > 1000 m above mean sea level (AMSL) and locations < 300 m AMSL. 
We found that birds moulted their primary wing feathers faster at low elevations than at 
high elevations. In addition, differences in elevation-related moult speed were modulated 
by bird sex. Males moulted their primary feathers faster than females at high elevations but 
slower than females at low elevations. Our findings highlight the importance of consider-
ing sex-dependent responses to spatial environmental conditions, which may influence key 
properties of major annual-cycle activities and life-history processes.

Keywords  Environmental gradients · Eurasian Blackbird · Life-history transitions · 
Scheduling of physiological processes · Thermal environment

Introduction

Males and females of both plants and animals often differ in behavioral, physiological, 
ecological, morphological and chromatic characteristics (Van Haaren et al. 1990; Anders-
son 1994; Grant et al. 1994; Kaciuba-Uscilko and Grucza 2001; Dale et al. 2015). Specifi-
cally, differences between males and females in thermoregulation or response to ambient 
temperatures have been described in numerous studies (Cunningham et al. 1978; Wagner 
and Horvath 1985; Yang and Gordon 1996; Kaciuba-Uscilko and Grucza 2001; Winne and 
Keck 2005). In general, males prefer lower ambient temperatures compared to females and 
have a higher tolerance for lower temperatures than females (Karjalainen 2012; Schaudi-
enst and Vogdt 2017). As a result of these differences, sex-specific selection of habitats 
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takes place during non-breeding periods among many species, especially in highly mobile 
ones, such as bats (Levin et al. 2013) and birds (Chapman et al. 2011). In these species, 
males tend to prefer habitats characterized by lower temperatures compared to those pre-
ferred by females (Alonso et  al. 2009; Chapman et  al. 2011; Levin et  al. 2013). Sexual 
differences in thermoregulation and response to ambient temperatures may consequently 
influence various physiological processes such as bird feather moult, but these effects have 
only been rarely studied to date.

Feather moult is an important and physiologically demanding life-history process that 
involves the replacement of plumage due to natural wear and tear (Lindström et al. 1993; 
McNamara and Houston 2008; Jenni and Winkler 2020a, b). In order to maintain the func-
tionality of their plumage, passerine birds usually replace their entire plumage annually. 
Since feathers cannot be renewed continuously from their base, like other keratinous struc-
tures (e.g., hair and claws), they are replaced only after the shedding of old feathers. The 
time lag between feather shedding and the full growth of the new feather creates a feather 
gap. Because several adjacent feathers may be shed during a short time interval, feather 
gaps of various widths and lengths are usually created during the moult process (Ginn and 
Melville 1983; Swaddle and Witter 1997; Jenni and Winkler 2020a, b). The speed of the 
moult process, and therefore also the size of the feather gap, is largely determined by the 
number of feathers that have been shed within a short time interval (Rohwer and Rohwer 
2013). Since rapid moults create large feather gaps compared with slower moults that result 
in small gaps, moult speed has the potential to substantially affect numerous physiological 
and behavioural costs, including the wing’s aerodynamic performance and associated costs 
of locomotion.

Moult-related feather gaps may substantially hamper flight performance and increase 
flight metabolism over periods of weeks to months (Haukioja 1971; Green and Summers 
1975; Francis et al. 1991; Hedenström and Sunada 1999; Hedenström 2003). Since the size 
of the moult gaps may negatively affect a bird’s flight capacity, there is a trade-off between 
the speed of the moult (and hence gap size) and flight performance that is important for 
foraging (Kiat et  al. 2016b) and escaping from predators (Lind 2001). Notably, feather 
moult tends to be more rapid in more seasonal environments (Fogden 1972; Jenni and 
Winkler 2020b), or as a result of time constraints (Kiat et al. 2019a). Yet, the development 
of the feathers in the moult process (Swaddle and Witter 1994; Bortolotti et al. 2002), and 
likely also the moult rate, also depend on the availability of food resources (Wiersma and 
Verhulst 2005) and the physiological ability of the bird to utilize these resources. There-
fore, we expect that bird physiology will depend on environmental conditions, including 
ambient temperature, which could affect the rate of feather moulting. However, empirical 
evidence is scarce regarding the influence of both external factors such as ambient tem-
perature, and internal factors such as bird sex, on the speed of feather moult (but see Grubb 
Jr et al. 1991).

In this study we aimed to explain within-species variation in feather moult speed. We 
specifically tested for an effect of elevation-dependent ambient temperature and whether an 
individual’s sex modulated the response to this environmental gradient during the moult-
ing period. We hypothesize that differences between males and females in environmen-
tal temperature preferences could affect physiological processes and that, specifically, bird 
feather moult may vary between the sexes at different ambient temperatures (e.g., Kiat 
et al. 2019b). We predict that birds found in locations where thermal conditions are more 
suitable for them will moult faster and therefore that moulting speed will change due to 
the difference in ambient temperature associated with elevation. Moreover, based on the 
documented differences between the sexes in their thermal tolerance (Alonso et al. 2009; 
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Chapman et  al. 2011), we predict that males will moult more rapidly than females at 
higher elevations and more slowly than females at lower elevations. We tested our predic-
tions in Eurasian Blackbirds (Turdus merula) undergoing active wing-feather moult after 
their breeding at two elevation ranges in Israel using wing primaries gap size as a proxy of 
moult speed.

Methods

To test the effects of elevation, which is tightly correlated with ambient temperatures (Fig. 
S1), and sex on feather moult speed, we collected wing moult data from the Eurasian 
Blackbird. This species is a common, sexually dimorphic passerine that occurs across a 
broad range of elevations. In Israel, the Eurasian Blackbird is a sedentary species, although 
some local movements, mainly to lower altitudes, occur in mid-winter (Collar and Christie 
2019). During 2012–2019 we sampled birds with an active post-breeding primary feather 
moult in different sites across Northern and Central Israel. All sampling sites (Fig. S2) 
were located within two elevational ranges, (1) high, at locations 1000–1600  m above 
mean sea level (AMSL): Mt. Hermon (33.31° N/35.77° E), Senaim Wadi (33.27° N/35.73° 
E) and Odem Forest (33.20° N/35.77° E), and (2) low, at locations − 400–300 m AMSL: 
Kfar Yuval (33.24° N/35.59° E), Regba (32.98° N/35.11° E), Mt. Carmel Slopes (32.69° 
N/34.99° E), Soreq Valley (31.77° N/34.92° E), Modiin Hills (31.90° N/34.99° E) and 
Einot Tzukim Nature Reserve (31.72° N/35.45°). The habitat in these sites is Mediterra-
nean woodlands, orchards, and tamarisk groves (Tamarix sp.), or a combination of those. 
The birds were trapped using mist-nets (permit number A258, Israel Nature and Parks 
Authority) and the sex of each individual was identified using diagnostic characteristics. 
Males have entirely black plumage and a yellow or orange-yellow bill, and females are 
duller dark brown with a brownish bill and some dull yellow around its base (Collar and 
Christie 2019).

The active moult state of each of the ten primary feathers (P1 – P10) was recorded during 
the post-breeding moult period (late June to early September, mainly July–August) using a 
moult scale of 0–5 (Ginn and Melville 1983) as shown in Table 1. Then, we estimated the 
missing proportion of each feather (for moult scores 1–4), while for moult scores of 0 and 
5 (fully grown old and new feathers, respectively), the gap length was 0.00 (Table 1). Due 
to differences in the lengths of different primary feathers (Underhill and Joubert 1995), 
we measured the length of each primary feather for a subset of individuals (Table 2). The 
sum of these mean feather lengths in the Eurasian Blackbird is 908.3 mm, representing the 
lengths of the primary feathers of a complete wing that is not undergoing active moult. We 
then used moult data to calculate the missing feather lengths due to moult. For example, for 
an individual with moult scores of 5-4-4-4-3-1-0-0-0-0 (Fig. 1), the feather gaps are 0.0, 
23.3, 23.5, 24.3, 51.5, 105.7, 0.0, 0.0, 0.0 and 0.0 mm, respectively. For this individual, the 
total gap length is 228.3 mm, which represents 25.1 % of the value of a non-moulted wing. 
To reliably study birds during active primary moult, we calculated the gap size only for 
individuals with a fully grown or almost fully grown P1 (moult score = 4 or 5) and an old 
or missing P10 (moult score = 0 or 1), but not growing or fully grown P10 (moult score = 2 
to 5) This was done to avoid calculating a biased estimate of the primary moult speed in 
cases in which the feather gap is not confined within the surface of the wing’s ten pri-
mary feathers. Importantly, the moult gap size is highly correlated with the speed of moult, 
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allowing estimation of moult speed by a single sampling of each individual (Bensch and 
Grahn 1993; Rohwer and Rohwer 2013).

Using a generalised linear model (GLM; family = Gaussian; g(µi) = µi), we explored 
the effects of elevation (two categories: high > 1000 m AMSL and low < 300 m AMSL), 
sex (male or female) and their interaction (independent variables) on moult speed, which 
is measured as the wing’s primaries gap size (dependent variable; normally distributed, 
P = 0.329, Shapiro-Wilk test). Due to the change in the shape of the moult gap with the 
progression of the moult process, we also included in the model the stage of the primary 
moult, represented by the number of new and full-grown primaries (Bensch and Grahn 

Table 2   The lengths of the 
Eurasian Blackbird primaries

mean ± standard deviation of the length of the part that protrudes from 
the skin; n = 3 individuals

Feather Mean length (mm) Standard 
deviation 
(mm)

P1 91.7 6.7
P2 93.0 7.2
P3 94.0 6.2
P4 97.0 5.3
P5 103.0 6.1
P6 105.7 5.5
P7 103.7 4.7
P8 100.7 3.8
P9 88.7 2.9
P10 31.0 2.6

Fig. 1   Example of a hypothetical moult score which includes primary moult scores of 5-4-4-4-3-1-0-0-0-0, 
and a feather gap created by the growing and shedding of primaries P2–P6 that constitute 25.1% of the total 
feathers lengths of the entire primary feathers of the wing
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1993). Furthermore, we included the ordinal date of the sampling of each individual to 
account for a possible effect of the progression of the season on moult gap size. The anal-
ysis (two-tailed, critical α = 0.05) was performed using the package ‘lme4’ (Bates et  al. 
2012) in R (version 3.6.1).

We note that in Israel, and hence also in the nine locations where Blackbirds were sam-
pled in this study, there is a high correlation between elevation and latitude (Pearson cor-
relation r = 0.81). Due to this high correlation we did not include latitude as an explanatory 
variable in our analysis. However, in order to examine the effects of these two factors (ele-
vation vs. latitude), we tested the same GLM described above but included latitude instead 
of elevation. We then selected the best model using AICc (Akaike 1987; Barton 2012).

Results

We collected primary feathers’ moult data and calculated the primaries’ moult-related wing 
gap size for 76 Eurasian Blackbirds that were divided into four groups: (1) males trapped in 
low areas (mean moult gap size ± standard deviation, 171.6 ± 46.9 mm; n = 17), (2) males 
from high areas (160.6 ± 54.3 mm; n = 29), (3) females trapped in low areas (216.6 ± 63.3 
mm; n = 10) and (4) females from high areas (143.9 ± 52.2 mm; n = 20). The GLM results 
(r2 = 0.51, df = 7; Table 3) indicated that trapping site elevation, bird sex and their interac-
tion, and the stage of the moult significantly affected moult gap size, and thus moult speed, 
in the Eurasian Blackbird. The moult gap size was higher in low areas (< 300 m AMSL) 
than in high areas (> 1000 m AMSL), and the primary moult speed became slower with 
the progression of the moult process (Table 3). In addition, females moulted their primary 
feathers more rapidly than males in low elevations, but more slowly than males in high 
elevations (Fig. 2). Ordinal date did not affect the moult gap size (Table 3).

The comparison between the GLMs that included elevation as an explanatory factor 
and those that included latitude showed stronger support (∆AICc = 5.96) for the model 
with elevation (AICc = 790.27, log-likelihood = -387.32, weight = 0.95) over latitude 
(AICc = 796.23, log-likelihood = -390.29, weight = 0.05).

Discussion

Feather moult is an important process in the avian yearly cycle (Jenni and Winkler 
2020a, b) that nonetheless may have short-term, negative consequences of reduced wing 
surface area and consequently hampered flight performance (Hedenström 2003). In this 

Table 3   The effects of elevation (meters above mean sea level), sex, moult stage, and ordinal date on moult 
gap size among Eurasian Blackbirds: list of statistics for the tested independent factors

Factor Coefficient ± standard error t value P value

Elevation 48.16 ± 16.32 2.95 0.004
Sexmale 26.24 ± 12.20 2.15 0.034
Elevation:sexmale − 50.92 ± 20.38 − 2.50 0.015
Moult stage − 16.73 ± 2.91 − 5.75 < 0.001
Sampling ordinal date 0.09 ± 0.41 0.23 0.819
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study, we found that Eurasian Blackbirds moulted their flight feathers more slowly at 
high elevations than at low elevations, resulting in smaller reduction of wing surface 
area and consequently possibly smaller effects for flight performance during moult in 
higher elevations. Additionally, we found that the differences in the speed of moult 
between high and low elevations depended on the individual’s sex. Males moulted their 
flight feathers faster than females at high elevations, but slower than females at low 
elevations (Fig. 2).

We propose that between-sex differences in the speed of moult, which result in different 
wing morphologies during the moulting period at different elevations, could result from 
sex-specific thermal preference or tolerance. In contrast, a previous experiment that exam-
ined the effect of ambient temperature during moult did not find that temperature affected 
feather growth rate (Viain and Guillemette 2016). Nonetheless, testing the physiological 
mechanisms by which temperature influences feather moult, including between-sex differ-
ences, could be a promising future direction. We note that several other environmental var-
iables are known to change with elevation, including oxygen partial pressure, which could 
also possibly impact the physiological tolerance of the animals (Altshuler 2006, Altshuler 
and Dudley 2006, DuBois et al. 2017). Yet, oxygen partial pressure is not expected to have 
an effect on the birds in the elevations sampled in the present study (< 1600 m AMSL).

The speed of feather moulting strongly affects the duration of the process – moult will 
be completed sooner if more flight feathers are shed and grow simultaneously within a 
short time interval. Rapid moult may nevertheless substantially reduce flight performance, 
hampering the ability to escape a predatory attack and inducing elevated flight metabolism 
(Hedenström and Sunada 1999; Lind 2001; Hambly et al. 2004). When the moult is slow, 
the wing’s moult gap is present for a longer time, although the size of the gap is smaller 
(Jenni and Winkler 2020b). Therefore, there are trade-offs between moult speed and the 
total duration of the process; rapid moult is short but involves large moult gaps, whereas 
prolonged moult is characterized by having a small gap throughout a substantial part of the 
bird’s annual cycle. The latter strategy is rare among temperate species, but often adopted 
by tropical birds (Fogden 1972).

Fig. 2   The effects of eleva-
tion (two categories: >1000 m 
above mean sea level, AMSL 
and < 300 m AMSL) and bird 
sex on the speed of moult in 
the Eurasian Blackbird (Turdus 
merula; n = 76 individuals). The 
results indicate that moult speed 
is higher in lower areas and that 
females moulted faster than 
males in lower areas and slower 
than males in higher areas
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Aerodynamic measurements of various wing morphologies, including wings with varia-
ble moult gap sizes (Achache et al. 2018), may help reveal the biomechanical consequences 
of rapid versus slow moulting in various species, between the two sexes and under various 
moulting environments. While the biomechanical consequences of these wing morphol-
ogies are not well understood, our study demonstrates that the combination of environ-
mental heterogeneity and the individual’s sex creates specific changes in bird form, and 
possibly function, with possible consequences for bird fitness (Arnold 1983). Accordingly, 
males and females likely differ in their ability to escape predators and in their energetic 
requirement during the period of feather moulting in a given environment due to the differ-
ence in their wing shapes. Specifically, the size of the moult gap, which is influenced by the 
environmental conditions they experience during this period, could be a major influencing 
factor. These sexual differences in moult gap size may lead to variation in compensation 
mechanisms that may help the bird to avoid predation (Lind 2001), by undertaking vari-
ous behavioural and physiological changes (Cresswell 2008). Furthermore, different escape 
capacities due to sex-specific wing morphology may result in differential survival (Liker 
and Székely 2005), with consequences for population structure and demography (Székely 
et al. 2014).

Additional factors that may affect the speed of moult are the amount of resources that a 
bird is able to acquire for the moulting process (Wiersma and Verhulst 2005) and the time 
available for completing this process. Juvenile birds, characterised by less efficient forag-
ing (Marchetti and Price 1989; Wunderle 1991), moult slower than adults (Kiat and Izhaki 
2016a). In addition, northern breeding distribution and long-distance migration, both asso-
ciated with shorter time available for moulting, have been found to increase the speed of 
moult compared with southern or sedentary species, respectively (Fogden 1972; Green and 
Summers 1975; Francis et al. 1991; Kiat et al. 2019a). Northern populations, which moult 
their plumage in more seasonal environments, are also associated with lower adult survival 
compared with those in less seasonal environments, for example, in tropical regions (Rick-
lefs 1997).

Environmental changes along elevational gradients are known to influence the morphol-
ogy, ecophysiology, growth and development, survival, reproduction and spatial distribu-
tion of many organisms (Hammond et  al. 2001; Hodkinson 2005; Pellissier et  al. 2012; 
Castiglione et al. 2017; Hao et al. 2019; Scholer et al. 2019). The response of organisms 
to environmental changes across elevational gradients might offer insights regarding how 
species may respond to temperature shifts associated with global climate change in time 
(Hodkinson 2005) since in both scenarios, individuals are exposed to different ambient 
temperatures that may affect different physiological processes, including feather moulting 
(e.g., Kiat et al. 2019b). Previous studies have shown an impact of environmental warm-
ing on the timing of feather moulting (Jukema and Wiersma 2014; Tomotani et al. 2018). 
Furthermore, global warming can affect the extent of feather moult differently in males 
and females among passerine species, including the Eurasian Blackbird (Kiat et al. 2019b). 
Therefore, global warming might also affect the speed of feather moult, with possible sex-
specific consequences. We thus call for future exploration of this potential effect.

By demonstrating the effects of elevation and bird sex on a major avian-annual rou-
tine process, our study highlights the importance of linking environmental conditions to 
life-history transitions, annual routines and dynamic animal morphology. We propose that 
males and females may respond differently to environmental heterogeneity over various 
axes, including elevational, latitudinal, longitudinal and temporal gradients. These ecologi-
cal effects are important for better understanding evolutionary and life-history processes 
(Schoener 2011).
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