
Netser et al. BMC Biology          (2022) 20:159  
https://doi.org/10.1186/s12915-022-01299-y

METHODOLOGY ARTICLE

TrackUSF, a novel tool for automated 
ultrasonic vocalization analysis, reveals modified 
calls in a rat model of autism
Shai Netser1,2, Guy Nahardiya1,2, Gili Weiss‑Dicker3, Roei Dadush3, Yizhaq Goussha1,2, Shanah Rachel John1,2, 
Mor Taub4, Yuval Werber5, Nir Sapir5, Yossi Yovel4, Hala Harony‑Nicolas6, Joseph D. Buxbaum6, Lior Cohen1, 
Koby Crammer3 and Shlomo Wagner1,2*   

Abstract 

Background: Various mammalian species emit ultrasonic vocalizations (USVs), which reflect their emotional state 
and mediate social interactions. USVs are usually analyzed by manual or semi‑automated methodologies that cat‑
egorize discrete USVs according to their structure in the frequency‑time domains. This laborious analysis hinders the 
effective use of USVs as a readout for high‑throughput analysis of behavioral changes in animals.

Results: Here we present a novel automated open‑source tool that utilizes a different approach towards USV analy‑
sis, termed TrackUSF. To validate TrackUSF, we analyzed calls from different animal species, namely mice, rats, and bats, 
recorded in various settings and compared the results with a manual analysis by a trained observer. We found that 
TrackUSF detected the majority of USVs, with less than 1% of false‑positive detections. We then employed TrackUSF 
to analyze social vocalizations in Shank3‑deficient rats, a rat model of autism, and revealed that these vocalizations 
exhibit a spectrum of deviations from appetitive calls towards aversive calls.

Conclusions: TrackUSF is a simple and easy‑to‑use system that may be used for a high‑throughput comparison of 
ultrasonic vocalizations between groups of animals of any kind in any setting, with no prior assumptions.
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Background
Vocal communication is fundamental to the social inter-
actions of many mammalian species [1–3]. In humans, 
vocal communications are highly dynamic, with distinct 
vocal signals that are typical of different types of social 
interactions and distinct emotional states [4, 5]. Mice and 
rats also emit various vocal signals in diverse social con-
texts and activities, such as parenting, mating, fighting, 

and playing [6], which are mostly in the ultrasonic range. 
Such ultrasonic vocalizations (USVs) reflect the emo-
tional state of the animal and facilitate or inhibit social 
interaction [7–9]. Although controversial, USVs have 
gained interest as a proxy model for speech and language 
[10–12] as well as for affective vocal communication in 
humans [13, 14]. USVs are also used by mammals for 
other purposes. For example, in addition to social vocali-
zations [15], echolocating bats use them for sensing the 
environment and for prey capturing [16]. Notably, USVs 
can be easily recorded and monitored across extended 
periods of time in various contexts and environments, 
by simply positioning an ultrasonic microphone in the 

Open Access

*Correspondence:  shlomow@research.haifa.ac.il

2 The Integrated Brain and Behavior Research Center (IBBR), Faculty of Natural 
Sciences, University of Haifa, Mt. Carmel, 3498838 Haifa, Israel
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-7618-0752
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12915-022-01299-y&domain=pdf


Page 2 of 20Netser et al. BMC Biology          (2022) 20:159 

animals’ vicinity. Thus, USVs are a rich and accessible 
source of information about the behavior and emotional 
state of various mammals and can be used for screen-
ing potential therapeutics in animal models of human 
pathological conditions [17–19]. Indeed, modified social 
vocalization activity was previously studied in various 
mouse models of autism spectrum disorder (ASD), where 
impairment in social communication is a core symptom 
[12, 20, 21]. However, the analysis of USVs is usually per-
formed by manual or by semi-automated methodologies 
which extract discrete USVs from the audio record-
ing and categorize them according to their structure 
in a spectrogram [22–24]. These highly laborious and 
observer-dependent methodologies hinder an efficient 
and large-scale use of such approach for high-throughput 
analysis of changes in social communication in animal 
models. During the last decade, several computerized 
tools for automated or semi-automated detection and 
categorization of USVs were reported [25–30]. Yet, most 
of these tools are rather complex and require the user to 
pre-define many parameters, or to train machine-learn-
ing algorithms on large samples of specific types of calls, 
hence are not easily employed by laboratories that are not 
specialized in animal vocalizations.

Here we present TrackUSF, an automated, high-
throughput, open-source, and easy-to-use tool, which 
we developed to analyze USVs of any kind with no prior 
assumptions. This unsupervised analysis tool, which does 
not necessitate detection and characterization of discrete 
USVs, requires pre-defining only one parameter (the 
threshold of signal strength) and does not demand any 
training of either the system or the user. Notably, Track-
USF aims to compare ultrasonic vocal signals between 
groups of animals at the frequency domain and does 
not supply information about USV structure or syntax. 
We validated the efficacy of TrackUSF by employing it 
to analyze several types of well-studied forms of animal 
vocalizations in various settings: mouse mating calls, rat 
social calls, and bat echolocation calls. We then dem-
onstrated its usefulness for identifying modified social 
vocalizations in animal models of neurodevelopmental 
diseases by revealing impaired social communications in 
adult male Shank3-deficient rats, a rat model of autism. 
Thus, TrackUSF is a simple and easy-to-use system that 

may be used for a high-throughput comparison of ultra-
sonic vocalizations between groups of animals of any 
kind in any setting, with no prior assumptions.

Results
TrackUSF
TrackUSF is designed for high-throughput automated 
analysis of auditory recordings in the ultrasonic range 
(20–100 kHz). As depicted in Fig.  1, each auditory clip 
is divided into 6-ms fragments which are filtered using 
a 15-kHz high-pass filter. First, all fragments that con-
tain signals exceeding a predetermined power threshold 
(ultrasonic fragments, USFs herein) are collected. Nota-
bly, this threshold is the only parameter that needs to be 
predetermined by the user. Then, the power spectrum 
between 15 and 100 kHz of each USFs is converted to 
16 Mel-frequency cepstral coefficients (MFCCs). Mel-
frequency features represent the short-term power spec-
trum of a sound, based on a linear cosine transform of 
a log power spectrum on a nonlinear Mel-scale of fre-
quency, with the frequency bands equally spaced accord-
ing to the Mel-scale [31, 32]. MFCCs of USFs pooled 
from all audio clips of the experiment are then analyzed 
together using a 3-dimensional (3D) T-distributed Sto-
chastic Neighbor Embedding (t-SNE) for visualization 
of the multi-dimensional dataset. 3D t-SNE models each 
high-dimensional vector by a point in a three-dimen-
sional space to such a degree that similar vectors are 
modeled by nearby points, while dissimilar vectors are 
modeled by distant points with high probability. Follow-
ing t-SNE analysis, distinct clusters are defined, either 
manually or using the Density-Based Spatial Clustering 
of Applications with Noise (DBSCAN) automatic cluster-
ing algorithm (see graphical user interface in Additional 
file 1: Fig. S1). In addition to the t-SNE graphs, the soft-
ware generates a Matlab file for each audio clip, which 
contains the time stamps and cluster affiliation of each 
USF. This enables the software to present the detected 
USFs on the spectrogram of the audio clip and to analyze 
the power spectrum density (PSD) of any given com-
bination of clusters and the number of USFs for each 
cluster. Another type of output is an Excel file detailing 
the number of USFs of each cluster for each audio clip 
analyzed.

Fig. 1 The TrackUSF pipeline. A All audio clips of a given experiment are pooled and analyzed together. B Each audio clip is divided into 6‑ms 
fragments. C All fragments then pass a 15‑kHz high‑pass filter, and those that contain signals exceeding a predetermined power threshold (USFs) 
are collected. D The power spectrum between 15 and 100 kHz of each USFs is converted to 16 Mel‑frequency cepstral coefficients (MFCCs). E 
MFCCs of all USFs are then analyzed together using a 3‑dimensional (3D) T‑distributed Stochastic Neighbor Embedding (t‑SNE) for dimensionality 
reduction and visualization. F Clusters are defined, either manually or using DBSCAN automatic clustering algorithm. G Example of further analyses 
of the results enabled by TrackUSF. H Also enabled is the examination of the USFs on the spectrogram of their corresponding audio clip

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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Validation of the TrackUSF methodology with mouse 
mating calls
To validate TrackUSF, we first compared it to the man-
ual USV-based methodology [6, 33] by analyzing mat-
ing calls of C56BL/6J and BalbC mice. It should be 
noted that hereafter we use the term “call” for any type 
of ultrasonic vocalization, regardless of its structure or 
sequence. The USV-based analysis took ~30 work-hours 
of a well-trained observer, while TrackUSF processed 
the same data in ~15 min on a standard computer. Fig-
ure  2A depicts the t-SNE analysis of all USFs detected 
by TrackUSF, with each USF represented by a single dot 
color-coded according to the mouse strain. This analysis 
revealed segregation between C57BL/6J (red) and BalbC 
(blue) USFs, suggesting distinct vocalization characteris-
tics. We used the option of manual clustering of Track-
USF to define four clusters of USFs (Fig. 2A, gray lines) 
based on separation in space and on the distinct segrega-
tion of the two strains in each cluster. This enabled us to 
inspect each USF with respect to its corresponding USV 
by overlaying detected USFs onto audio-clip spectro-
grams. As exemplified in Fig. 2B, groups of USFs, denoted 
by their cluster numbers, overlap distinct USVs. The first 
example (Fig.  2Bi) included only non-vocal sounds and 
was enriched with USFs from cluster 1 (Fig.  2A), sug-
gesting that cluster 1 is mostly composed of non-vocal 
sounds (herein termed noise). Other examples include 
USVs represented by USFs originating from clusters 2–4 
(Fig. 2Bii–iv).

To further analyze each of the clusters we defined, 
we plotted the PSD profile of USFs from each cluster. 
As apparent in Fig. 2C, all clusters, except for cluster 1, 
showed clear, distinct peaks at specific frequencies. In 
contrast, cluster 1 included USFs of variable frequen-
cies, mainly in the lower range. Given this PSD profile, 
and our findings that these USFs represent noise, clus-
ter 1 was excluded from all downstream analyses of this 
dataset.

To compare the results of TrackUSF with those 
obtained using the manual USV-based methodology, we 
plotted the distribution of the USFs for each cluster and 
the manually detected USVs over time. As depicted in 
Fig. 2D, manually detected USVs appeared in sequences 

(songs), with prolonged periods of silence between them. 
Notably, almost all USVs were represented by at least one 
USF (from clusters 2–4), with no apparent false-positive 
USFs.

To evaluate the effectiveness of TrackUSF as an analy-
sis tool for ultrasonic vocalizations, we compared its 
analytical abilities to those of DeepSqueak, one of the 
most cited (cited by 99 articles, February 3, 2022, Google 
Scholar) recent computerized tools for such analysis [27]. 
We set the tonality level of DeepSqueak to 0.15 arbitrary 
units (a.u.) since the default level of 0.3 a.u. yielded poor 
results. Analyzing the same dataset described above 
(Fig. 2) using DeepSqueak took a similar amount of time 
as using TrackUSF. Figure  3A shows an example of a 
spectrogram analyzed manually (detected USVs within 
orange squares), by DeepSqueak (detected USVs within 
blue squares), and by TrackUSF using two threshold 
levels (detected USFs marked by asterisks color-coded 
according to threshold level). As apparent, in this case, 
DeepSqueak mistakenly defined three distinct USVs 
as a single one, a mistake that repeated itself multiple 
times (~10% of detected USVs, see summary in Addi-
tional file  2: Table  S1). As apparent, TrackUSF detected 
all USVs in the example by at least one USF. However, 
detected USFs covered only part of each USV (mainly the 
areas of stronger signals), in a manner strongly depend-
ent on the threshold level. For a quantitative comparison 
between the various methods, we employed TrackUSF to 
analyze the data using five distinct threshold levels (1, 1.5, 
2.2, 2.7, and 3.5 a.u.). As expected, the lower the thresh-
old, the longer the time it takes for TrackUSF to analyze 
the same set of data. In our case, the range was between 
~20 min for threshold = 1 to ~10 min for threshold = 
3.5. The percent of manually detected USVs which were 
overlapped by at least one USF varied between 84% in the 
lowest threshold (1 a.u.) and 46% in the highest threshold 
(3.5 a.u.), while DeepSqueak performed at 68% (Fig. 3B, 
Additional file 2: Table S1). The total duration of manu-
ally defined USVs that was also occupied by USFs varied 
between 48% in the lowest threshold and 19% in the high-
est, while DeepSqueak captured 67% of USV duration 
(Fig.  3C, Additional file  2: Table  S1). This is most likely 
because many USVs are interrupted by gaps of silence or 

(See figure on next page.)
Fig. 2 Automated analysis of mouse mating calls using TrackUSF. A 3D t‑SNE analysis of all USFs recorded from three C57BL/6J and three BalbC 
male‑female pairs. Each USF is represented by a dot, color‑coded for the strain. Black numbers represent the distinct clusters, manually defined by 
the drawn gray lines. Note the clear separation of cluster 1, which includes non‑vocal signals defined as noise. B Examples of spectrograms showing 
USFs from all clusters, each marked as the number of the cluster it is linked to, superimposed by the TrackUSF software on their corresponding 
non‑vocal (i) or vocal (ii–iv) signals. C PSD analysis of the distinct clusters shown in A. The total number of USFs in each cluster is detailed in the 
legend. Note the unique profile of cluster 1, which is mainly enriched with non‑vocal signals (noise). D Above: co‑localization of USFs (each of which 
is represented by a single colored dot) and manually defined USVs (black lines, the length of which is proportional to the USV duration) during a 
whole 10‑min‑long audio recording of mouse mating calls. Note the various sequences of USVs, separated by prolonged silent periods. Below — 
one USV sequence displayed in higher resolution, with the co‑localized USFs (excluding cluster 1). Note the accurate detection of most USVs by the 
various types of USFs



Page 5 of 20Netser et al. BMC Biology          (2022) 20:159  

Fig. 2 (See legend on previous page.)
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low amplitude signals, which are counted in their dura-
tion by USV-based methodologies but do not contain 
USFs (see example in Fig. 2Biii).

Nevertheless, we found a statistically significant cor-
relation between the number of manually detected USVs 
and the number of USFs detected by TrackUSF for all 
threshold levels (Pearson correlation, R2=0.81, 0.88, 0.91, 
0.92, 0.93, respectively, p<0.001 for all; Fig. 3D). We also 
found that less than <1% of all USFs were false positive 
(not representing any real USV), regardless of the thresh-
old level (Fig. 3E). In contrast, DeepSqueak had a much 
higher level of false-positive detections, ranging between 
0.3 and 26% for the various audio clips and averaging at 
6.9% (Fig. 3E, Additional file 2: Table S1).

To assess the ability of TrackUSF to capture differ-
ences in call frequency profiles between animal groups, 
we compared the PSD analyses of the manually detected 
USVs and DeepSqueak to those obtained using Track-
USF, separately for the C57BL/6J (Fig.  3F) and BalbC 
(Fig.  3G) calls. Interestingly, this analysis identified a 
clear difference between the two strains, with the USVs 
of C57BL/6J mice showing the main peak at a lower 
pitch (40 kHz) compared to the higher pitch (60 kHz) 
of the BalbC USVs. To verify that similar characteris-
tics are identified with TrackUSF (using a threshold of 
2.7 a.u.), we scaled the PSD curve of each cluster to the 
number of USFs in this cluster. We then summed the 
curves of the scaled clusters separately for C57BL/6J 
and BalbC mice. This analysis yielded PSD curves that 
were highly similar to those achieved using the manu-
ally extracted USVs (Fig. 3F, G). Notably, a similar analy-
sis of the USVs detected by DeepSqueak from the same 
recordings yielded very similar PSD profiles for C57Bl/6J 
mice (Fig.  3F), but was shifted towards higher frequen-
cies compared to manually detected USVs in the case of 
BalbC mice (Fig. 3G).

Since DeepSqueak enables automatic analysis of two 
more parameters for the detected USVs, call length and 

slope, we compared the probability functions of these 
parameters between the two strains. We found that these 
parameters do not yield a better separation between the 
USVs of the two strains than call frequency (Fig. 3H, I). 
Finally, when employing the ability of DeepSqueak to 
cluster (using K-means clustering) the detected USVs 
based on all three parameters (principal frequency, call 
length, and slope; Fig. 3J), we found that the segregation 
between the two strains was apparently similar to that 
achieved using TrackUSF (compare to Fig. 2A), which is 
based upon signal frequency and amplitude only.

Thus, TrackUSF enables automated and time-efficient 
analysis of mating calls in mice in a manner that identi-
fies the majority of USVs detected either manually or by 
DeepSqueak. Accordingly, the number of USFs identified 
using TrackUSF correlated very well with the number of 
USVs detected by the USV-based methodologies. Moreo-
ver, TrackUSF seems superior over DeepSqueak in its 
very low false-positive detections and by avoiding joining 
multiple USVs together. Finally, despite the relatively lim-
ited coverage of USV duration by TrackUSF, it accurately 
captures the spectral characterization of the calls and 
allows separation between animal groups accordingly.

Validation of the TrackUSF methodology with rat social 
calls
Adult rats emit a relatively high rate of USVs during 
social (either male-male or male-female) interactions [6, 
8, 33, 34]. These calls are generally divided into two cat-
egories. The first type is the “22 kHz aversive calls,” which 
are associated with negative states and aversive situations 
and are characterized by low pitch (20–30 kHz) and pro-
longed duration (150–3000 ms). The second type is the 
“50 kHz appetitive calls,” which are further divided into 
flat and highly modulated (trills) USVs and are associated 
with positive states and appetitive situations. These appe-
titive calls are characterized by high pitch (40–80 kHz) 
and short duration (10–150 ms). To assess the efficiency 

Fig. 3 TrackUSF accurately captures the majority of the manually detected USVs and enables their further characterization. A An example of a 
spectrogram showing a sequence of USVs, as defined manually (orange boxes) and by DeepSqueak (blue boxes). USFs detected by TrackUSF 
at two threshold levels are marked by the green (threshold = 2.7 a.u.) and pink (threshold = 1 a.u.) asterisks. B Mean percentage of manually 
defined USVs, overlapped by at least one USF, using five different thresholds (1, 1.5, 2.2, 2.7, and 3.5 a.u.), as well as by DeepSqueak‑defined USVs 
(gray bar). C Mean percentage of coverage of the total duration of manually defined USVs by USFs for each of the various thresholds, as well as by 
DeepSqueak‑defined USVs (gray bar). D Number of detected USFs for each audio clip plotted as a function of the number of the corresponding 
manually detected USVs, for each of the various thresholds. Each dot represents a distinct audio clip analyzed using a distinct threshold. Distinct 
colors represent distinct thresholds, as depicted in the legend. E Percentage of all detected USFs from all clusters, except for cluster 1 (noise), 
that were found to represent non‑USV signals (false‑positive detections) for each of the various thresholds, as well as for DeepSqueak. Each point 
represents a distinct audio clip. F Mean PSD profiles of calls emitted by C57BL/6J mice pairs detected either manually (orange), by DeepSqueak 
(blue), or by TrackUSF (green). The TrackUSF analysis used a threshold of 2.7 a.u., after scaling the PSD curve of each cluster to the number of 
USFs and summing the curves separately for C57BL/6J mice. G As is F, for the calls emitted by BalbC mice. H Normalized probability function of 
DeepSqueak‑detected USVs according to their duration. I Normalized probability function of DeepSqueak‑detected USVs according to their slope. 
J K‑means clustering of DeepSqueak‑detected USVs according to their length, slope, and principal frequency, separately for each mouse strain. All 
error bars represent SEM

(See figure on next page.)
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of TrackUSF in analyzing rat social vocalizations, we 
employed this system (using a threshold of 1) for ana-
lyzing USVs emitted during 5-min free social interac-
tions between pairs of male and female Sprague Dawley 
(SD) rats (n=6 pairs, one 5-min long audio clip per pair). 
Similarly to mouse calls (Fig.  2A), TrackUSF analysis of 
rat calls produced two clear clouds of USFs in the t-SNE 

analysis: one of noise and one of vocalization fragments 
(Additional file 1: Fig. S2A). Here we used the automatic 
clustering option of the TrackUSF software (see the 
“Methods” section) to define various clusters, displayed 
in distinct colors in Additional file  1: Fig. S2B. Out of 
the 10 automatically defined clusters, clusters 1–6 com-
prised noise fragments, while clusters 7–10 comprised 

Fig. 3 (See legend on previous page.)
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vocalization fragments (see examples in Additional file 1: 
Fig S2C and Fig.  4A). Accordingly, PSD analysis of the 
various clusters revealed that clusters 7–10 yielded each a 
well-defined peak in the range of 35–70 kHz (Additional 
file 1: Fig. S2D).

We then compared the TrackUSF analysis with the 
analysis of another recently published computerized 
tool for segmentation of rodent USVs — USVSEG [29]. 
We employed this tool to the same dataset of rat calls, 
using the specific parameters defined by the authors for 
rat pleasant calls [29]. Figure  4A exemplifies the spec-
trogram of audio segments defined as USFs by Track-
USF (green and orange asterisks) and those defined as 
USVs by USVSEG (numbered purple framed above the 
spectrogram). As apparent, TrackUSF detected all USVs 
in this spectrogram without including any noise seg-
ment. In contrast, besides genuine USVs (frames 1, 3–5), 
USVSEG also detected several noise segments as USVs 
(frame 2). Moreover, as happened before to DeepSqueak 
(Fig. 3A), USVSEG defined multiple USVs as one (frame 
5). A quantitative comparison of both tools to manual 
analysis revealed that TrackUSF detected about 60% of 
the calls (56.5–78.2% relative to manually detected USVs) 
while USVSEG detected about 100% of them (in some 
cases even better than the manual analysis) (Fig.  4B). 
However, this high rate of detection comes with a price, 
as USVSEG also detected a very high rate (10–90% rela-
tive to manually detected USVs) of noise audio segments 
as USVs (Fig. 4C). Thus, USVSEG yield a very high rate 
of false-positive detections. In contrast, TrackUSF made 
a very low rate of false-positive detections (<1%). As for 
mice USVs, the number of USFs detected by TrackUSF 
for rat call was linearly correlated with the number of 
USVs in each audio clip (Pearson correlation, R2=0.9618, 
p<0.001; Fig. 4D). Finally, PSD analysis of the audio seg-
ments detected as USVs by the manual analysis, Track 
USF, and USVSEG (Fig.  4E) revealed that TrackUSF 
yielded a very similar PSD profile as the manual analysis, 

while USVSEG yielded a rather distinct profile with a sig-
nificant contribution of noise, as reflected by the promi-
nent peak at low (20–30 kHz) frequency.

For further validation of TrackUSF with rat calls, we 
used it for analyzing male-male calls in two types of set-
tings: (1) during 5-min long free interactions between 
an adult (subject) and a juvenile (social stimulus) male 
rats; (2) during a 5-min social preference (SP) test when 
the juvenile was located within a triangular chamber at 
one corner of the arena and investigated by the adult 
male, as previously described by us [35, 36]. Each subject 
(n=15) was tested for 2–4 sessions in each type of set-
ting. Overall, we recorded audio clips from 45 sessions 
of free interactions and a similar number of SP tests. 
Figure 4F depicts the t-SNE analysis of all USFs derived 
from vocalization recorded in these experiments, color-
coded according to the type of session. We used again the 
automatic clustering option of the TrackUSF software to 
define various clusters, which are displayed in distinct 
colors in Fig. 4G. Example spectrograms of vocalization 
containing USFs of clusters 1, 5, or 9 (each spectrogram 
contains USFs of a single cluster) are shown in Fig.  4H, 
while examples representing all other clusters are dis-
played in Additional file  1: Fig. S2E. As apparent, clus-
ters 1–4 are clearly separate from all other clusters and 
represent noise. Thus, as was demonstrated above for 
mouse and rat male-female calls, the noise was readily 
separated from the vocal signals by TrackUSF. In contrast 
to clusters 1–4, clusters 5–8 represent vocalizations with 
the characterization of aversive calls, i.e., prolonged flat 
vocalizations below 30 kHz, while cluster 9 seems to rep-
resent appetitive calls, which are brief and above 50 kHz. 
This is also apparent from the PSD analysis of the vari-
ous clusters (Additional file 1: Fig. S2F), shown in Fig. 4I 
as the mean PSD profiles of clusters 1–4 (noise), clus-
ters 5–8 (aversive calls), and cluster 9 (appetitive calls). 
Thus, the TrackUSF analysis revealed the same types of 
aversive, and appetitive vocalizations that are well-known 

(See figure on next page.)
Fig. 4 Analyzing rat social vocalizations using TrackUSF. A An example of a spectrogram showing a sequence of USVs produced during 
male‑female interactions of SD rats and their detection by USVSEG (purple boxes above). USFs detected by TrackUSF (threshold = 1 a.u.) are marked 
by the orange (cluster 9) and green (cluster 10) asterisks below. B A comparison of the mean percentage of manually detected USV which were 
automatically detected by either TrackUSF or USVSEG, from 6 audio clips of 10‑min SD rat male‑female interaction. C Percentage of all automatically 
detected USVs that were found to represent non‑USV signals (false‑positive detections) for either TrackUSF or USVSEG. Each point represents a 
distinct audio clip. D Number of detected USFs for each audio clip plotted as a function of the number of the corresponding manually detected 
USVs. Each dot represents a distinct audio clip. E Mean PSD profiles of either USVs detected manually (yellow), by USVSEG (pink) or USFs detected 
by TrackUSF (green). The PSD analysis of TrackUSF detected USFs was conducted after scaling the PSD curve of each cluster to the number of USFs 
and summing the curves. F The t‑SNE analysis of all USFs extracted from audio recordings of 45 sessions of free interactions and 45 sessions of SP 
test, conducted with male SD rats (male‑male vocalizations). Each USF is represented by a dot, color‑coded for the experimental setting. G DBSCAN 
automatic clustering of the USFs based on the t‑SNE analysis result. H Examples of spectrograms showing signals composed USFs from three 
distinct clusters, including noise (cluster 1) or vocalization (clusters 5 and 9) signals. Each spectrogram contains USFs of a single cluster only. I Mean 
PSD profiles of USFs from clusters 1–4 (noise, blue), 5–8 (aversive calls, orange), and 9 (appetitive calls, purple). J Pie‑charts of the various sessions 
categorized according to the number of USFs per session, separately for appetitive (cluster 9, upper charts) and aversive (clusters 5–8, lower charts) 
USFs recorded during SP test (left charts) and free interaction (right charts) sessions
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Fig. 4 (See legend on previous page.)
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to characterize male-male social interactions in rats. 
Yet, the clear separation of the aversive calls to several 
clusters (5–8) suggests small but consistent differences 
between these calls at the frequency domain, as con-
firmed by their distinct PSD profiles (Additional file  1: 
Fig. S2F). The sensitivity of TrackUSF to such changes, 
especially at the lower range of sound frequency, may be 
an advantage of TrackUSF over previous techniques.

We further analyzed the numbers of USFs of the vari-
ous clusters in each session and categorized them accord-
ing to call type (aversive calls — clusters 5–8; appetitive 
calls — cluster 9). As shown in Fig.  4J, both types of 
experimental settings (free interaction and SP test) 
revealed more sessions enriched with appetitive USFs 
than sessions enriched with aversive USFs. Also, appe-
titive USFs are more abundant during free interactions 
where both animals are free to move in the arena, while 
aversive USFs are more frequent during SP tests where 
the juvenile rat is restricted in the triangular chamber. 
We found a significant difference in abundance between 
appetitive and aversive USFs in the free interaction set-
ting but not for the SP test, and a significant difference 
between free interaction and SP test for appetitive USFs 
but not for aversive calls (Friedman test: χ2 (3)=28.594, 
p<0.001, post hoc Wilcoxon signed rank test: SP aver-
sive-affiliative: Z=−0.994, p=0.320; free aversive-affili-
ative: Z=−4.438, p<0.001; SP-free affiliative: Z=−3.782, 
p<0.001; SP-free aversive: Z=−0.013, p=0.990). Thus, 
TrackUSF can be used to capture differences in social 
vocalization activity between distinct experimental 
settings.

Using TrackUSF for analysis of bat calls in a natural setting
To validate TrackUSF as a mean for analysis of ultrasonic 
vocalizations of non-rodent animals recorded outside 
of the lab, we employed it to analyze recordings of bat 
echolocation calls made in the Hula Valley in Israel, using 
microphones located at three distinct heights (50 m, 100 
m, and 150 m) above ground, hanging on the chord of a 
large helium balloon. From each height, we manually pre-
selected recordings that contain calls of single bats from 
two different species: R. microphyllum and P. pipistrel-
lus (typically 2–4 s long). Figure  5A depicts the t-SNE 
analysis of all USFs identified in these recordings, color-
coded according to the recorded bat species and height 
of recording (7–49 clips for each case, see legend of 
Fig. 5A). As apparent, the USFs of different species seg-
regate to distinct clusters. We used the automatic cluster-
ing option of the TrackUSF software and observed many 
small clusters representing noise (circled by a gray line in 
Fig. 5A, B), which was strong and highly variable between 
the recordings (Fig.  5C). In addition to the noise, three 
clusters of vocalization were revealed, of which cluster 

1 represented recordings of P. pipistrellus, while clusters 
2 and 3 mainly represented recordings of R. microphyl-
lum. As shown in Fig. 5C, clusters 2 and 3 represent very 
similar vocalizations, while cluster 1 represents vocaliza-
tions with a different distinct structure and frequency. 
These differences are also observed in the PSD analysis 
of the three clusters (Fig. 5D), which revealed very similar 
peaks for clusters 2 and 3 at 25–26 kHz, probably repre-
senting two different individuals (see insets in Fig.  5C), 
while cluster 1 yielded a prominent peak at ~ 47 kHz. We 
then counted the USFs detected for each cluster at each 
height and averaged these numbers separately for each 
bat species. As apparent in Fig. 5E, for P. pipistrellus, we 
found almost only USFs of cluster 1, with no difference 
in USF number between the various heights (Kruskal-
Wallis test: χ2 (2) = 1.774, p = 0.412). In contrast, for 
R. microphyllum, we observed USFs of cluster 3 in all 
heights (Kruskal-Wallis test: χ2 (2) = 3.816, p = 0.148), 
while cluster 2 was observed only at 50 m and 100 m, but 
was absent at 150 m (Kruskal-Wallis test: χ2 (2) = 18.409, 
p < 0.001). Thus, using TrackUSF, we were able to detect 
the previously described species-dependent differences 
in vocalizations [37, 38] without a need to train the sys-
tem for detecting such differences. Notably, even though 
the vocalizations composed of USFs from clusters 2 and 
3 are almost identical, the use of TrackUSF allowed sepa-
rating them, showing again its potency in distinguishing 
between rather similar auditory signals.

TrackUSF reveals modified social vocalizations 
of Shank3‑deficient rats
Following the validation of the TrackUSF methodology, 
we examined the ability of this system to reveal modified 
vocalization activity during social interactions in Shank3-
deficient rats, a rat model of ASD [39, 40]. To record such 
USVs, we conducted experiments comprised of 10-min-
long encounters between dyads of adult male rats of the 
same genotype, as described for SD rats above (Fig.  4). 
About half of the experiments comprised encounters 
between unfamiliar (novel) animals and the other half 
between familiar animals (cagemates). Besides the three 
genotypes of Shank3-deficient rats (wild-type (WT), het-
erozygous (Het), and homozygous (KO)), we conducted 
similar experiments with age-matched adult male SD 
rats. Overall, we recorded 109 experimental sessions. It 
should be noted that the relatively larger number of Het 
sessions  (See legend of Fig.  6A) reflects their relative 
abundance in the litters.

All audio clips were pooled together and analyzed by 
TrackUSF using a threshold of 2.7 a.u. and clusters were 
defined manually. As apparent (Fig.  6A), some clusters 
of USFs (e.g., 15, 16) contained a significant representa-
tion of all types of experimental sessions (all genotypes 
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and both familiarity levels). Nonetheless, other clus-
ters (e.g., 4–14) contained almost solely USFs of Het or 
KO Shank3-deficient rats. These results suggested dif-
ferent USVs emitted during social encounters between 

Shank3-deficient rats and their WT littermates or SD 
rats. To further examine this possibility, we separately 
analyzed the USFs represented in each cluster by PSD 
analysis (Fig. 6B).

Fig. 5 Analyzing bat USVs recorded in a natural scene using TrackUSF. A The t‑SNE analysis of all USFs extracted from audio recordings of bat 
calls, made from three distinct heights (50, 100, and 150 m) above ground level at the Hula Valley. These recordings were preselected to include 
vocalizations of either R. microphyllum or P. pipistrellus. Each USF is represented by a dot, color‑coded according to species and height. Note the 
gray line manually defining the noise USFs. B Automatic clustering of the USFs based on the t‑SNE analysis. Note that the cloud of noise USFs 
defined by the gray line in A is now broken into multiple clusters, while only clusters 1–3 represent real vocalizations. C Examples of spectrograms 
of vocalizations represented by USFs of the three clusters. Insets are showing one magnified vocalization per spectrogram. D Mean PSD profiles 
of USFs from the noise clusters (gray), cluster 1 (blue), and clusters 2–3 (red and orange). Inset showing the peaks of clusters 2–3 in higher 
magnification. E Mean number of P. pipistrellus USFs detected in each height, separately plotted for the three distinct clusters of USFs. Each dot 
represents one audio clip. F Mean number of R. microphyllum USFs detected in each height, separately plotted for the three distinct clusters of USFs. 
Each dot represents one audio clip. **p<0.01, ***p<0.001, post hoc Dunn test following main effect. All error bars represent SEM
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As with the former datasets described so far, cluster 
1, which was clearly separated from all other clusters 
and included data from all genotypes, comprised USFs 
of variable frequencies at the lower range. By examining 
their appearance in the spectrograms, USFs of cluster 1 
were found to be non-vocal sounds (noise, see example 
in Fig. 6Di), and therefore, this cluster was excluded from 
all further analyses. Clusters 2 and 3 were also excluded 
from this and other downstream analyses, as they 
included USFs originating from only two sessions (the 
number of sessions representing each cluster is detailed 
in Fig. 6B legend).

Clusters 15 and 16, which showed wide PSD peaks 
above 50 kHz (Fig. 6B), contained USFs of brief vocaliza-
tions that seem to represent the classical 50-kHz appe-
titive calls (Fig. 3E iv, v), described above for SD rats. In 
contrast, clusters 4–14, which contained mainly USFs 
from Het and KO rats displayed relatively sharp, well-
defined peaks between 20 and 40 kHz. By their appear-
ance in the spectrograms (Fig. 3D and E ii–iii), USFs of 
these clusters seem to represent vocalizations which are 
between the rat classical appetitive and aversive calls. 
In fact, in many cases, USFs of these clusters (especially 
4–10) appeared in sequences along prolonged flat USVs, 
which resembled classical aversive calls (Fig. 3D).

In order to examine if USFs from the distinct clusters 
(4–16) tend to appear in certain combinations, we used 
TrackUSF to calculate their likelihood to appear before 
or after a USF from a given cluster (hereafter termed 
“vicinity”), within a time window of 0.5 s for each direc-
tion (Fig.  6E, Additional file  1: Fig. S3, color-coded for 
each cluster). We found that USFs from clusters 4–14 had 
variable tendencies to appear in certain combinations 
(see for example Fig.  6E—left panels, for cluster 9), but 
the highest likelihood was for the repetitive appearance 
of USFs from the same cluster, as reflected by the high 
amplitude of their vicinity peak (middle peak in each rep-
resentative graph in Fig. 6E and Additional file 1: Fig. S3). 
We termed this likelihood as “repeatability” and further 

explored it below. In contrast to clusters 4–14, USFs of 
clusters 15 and 16 showed almost no vicinity with USFs 
from other clusters in all genotypes (Fig.  6E — middle 
and right panels).

Shank3‑deficient rats emit higher numbers of low‑pitch 
vocalization fragments
We next examined if the number of detected USFs varied 
between the various genotypes (Fig. 7A). We found that 
while all SD rats displayed < 200 USFs, the Shank3-Het, 
KO, and WT littermates presented a tri-modal distribu-
tion, with many of them displaying > 200 USFs. Never-
theless, only a few sessions of WT rats had > 400 USFs, 
while most KO sessions had > 600 USFs (Fig. 7A). To fur-
ther explore this tendency, we categorized each session 
of the three genotypes of Shank3-deficient rats according 
to the number of detected USFs to low (<600) and high 
(>600) and examined the proportions of each genotype in 
these categories separately for cagemates and novel ses-
sions. We found that while WT and Het animals showed 
a rather similar proportion of 14–27% sessions with > 600 
USFs, in KO animals, more than 50% of the sessions were 
with > 600 USFs (Fig.  7B). This tendency was apparent 
in all sessions, regardless of the familiarity between the 
animals (novel animals or cagemates). Statistical analysis 
revealed a significant difference between the three geno-
types (Kruskal-Wallis test: χ2 (5) = 14.874, p = 0.0109), 
with no familiarity-dependent differences. We therefore 
combined the two familiarity levels and analyzed the 
statistical differences between the three genotypes. We 
found a statistically significant difference between the 
three genotypes (Kruskal-Wallis test: χ2 (2) = 12.412, p 
= 0.002). A post hoc analysis revealed a significant dif-
ference between KO animals and the two other groups 
(p-adjusted chi-square, KO:Het — p = 0.003; KO:WT 
— p = 0.019), with no difference between WT and Het 
animals.

We further examined this tendency separately for 
each of the clusters using a slightly more detailed 

(See figure on next page.)
Fig. 6 Modified pitch of ultrasonic vocalizations revealed by TrackUSF in Shank3‑Het and KO. A 3D t‑SNE analysis of all USFs recorded during all 
sessions. Each USF is represented by a dot, color‑coded for the genotype and familiarity level. Black numbers represent the distinct clusters. Note 
the clear separation of cluster 1, which included non‑vocal signals defined as noise. B Mean PSD profiles of all distinct clusters shown in B. The 
number of sessions represented by >10 USFs in each cluster, as well as the total number of USFs of each cluster, are detailed in the figure legend. 
Note the continuous spectrum in the 25–45‑kHz range created by clusters 4–14. C Example spectrogram showing USFs from clusters 6–10, each 
marked as the number of the cluster it is associated with, superimposed by the TrackUSF software on their corresponding single USV. Note the 
gradual change in cluster number as the USV frequency is getting lower with time. D Example spectrograms showing USFs from several clusters, 
each marked as the number of the cluster it is associated with, superimposed by the TrackUSF software on their corresponding noise (i) or USVs 
(ii–v) signals. Note the trill‑like appearance of USFs from cluster 16 (v). E Examples of vicinity curves describing the probability of a USF from any 
cluster (color‑coded for the distinct clusters) to appear before or after USF from a given cluster across the three genotypes of Shank3‑deficient 
rats. Note the stability across genotypes exemplified for clusters 9 (left) and 15 (middle), in contrast to the growing tendency of other clusters to 
combine with cluster 16 in Het and mainly KO animals. It should be noted that USFs of clusters 4–14 were so rare in WT animals that the vicinity 
curves of cluster 9 are taken from a single WT animal
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Fig. 6 (See legend on previous page.)
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categorization. As shown in Fig.  7C for clusters 4–16, 
quantities of USFs from clusters 4–14 were differentially 
distributed between the genotypes. While WT animals 
showed very restricted numbers of sessions with >50 
USFs, KO animals displayed high numbers of such ses-
sions, and Het animals were between WT and KO ani-
mals. In contrast, clusters 15 and 16, which seem to 
represent the 50-kHz appetitive USVs, were similarly 
distributed between the three distinct genotypes. A 
closer look into these results suggested a gradient in the 
number of sessions with >50 USFs between the vari-
ous clusters, with generally higher numbers of sessions 
for clusters representing high-pitch calls (Fig.  7C). In 
agreement with this observation, we found a statistically 
significant positive correlation (Pearson correlation, 
R2=0.77, p < 0.0001) between the number of sessions 
contributing > 10 USFs for a given cluster and the PSD 
peak frequency of this cluster (Fig. 7E), with high-pitch 
clusters having more sessions than low-pitch clusters. 
These results suggest that high-pitch calls are more 
common among the various sessions.

We also noticed a similar gradient when calculat-
ing the probability of USFs to follow or precede other 
USFs of the same cluster (repeatability) (Fig.  7D). We 
therefore calculated the half-width of this repeatability 
curve for each cluster and used it as a proxy for the 
duration of USVs composed of repeated appearances of 
the same USF. This analysis was done for Het and KO 
animals together, as they showed very similar repeat-
ability curves (Additional file  1: Fig. S4), while for 
WT animals we did not have enough calls to perform 
such analysis for all clusters. A statistically significant 
negative correlation (Pearson correlation, R2=0.78, 
p<0.0001) was found between the PSD peak frequency 
and repeatability half-width of each cluster (Fig.  7F). 
Given that wider repeatability half-width is pointing 
to a longer duration of USVs, this correlation suggests 
that longer USVs are composed of low-pitch USFs. Taken 
together, these results suggest that Shank3-deficient  
animals (Het and KO animals) exhibit a spectrum of 
modified social vocalizations. Within this spectrum, a 
stronger modification, exhibited by fewer animals, is 

reflected by calls that are closer to 22-kHz USVs in both 
their pitch (low) and duration (extended), while weaker 
and more common levels of modification are reflected 
by USVs that are closer to 50-kHz calls in both pitch and 
duration.

Discussion
During recent years, multiple computerized tools for 
automated or semi-automated detection and categori-
zation of USVs were presented (see the “Background” 
section for references). Nevertheless, most of these anal-
ysis tools are supervised (for example, XBAT, VoICE, 
MUPET) and hence require defining a significant num-
ber of parameters by a trained user. The unsupervised 
tools (for example, DeepSqueak) require training of the 
system to the specific type of vocalizations, thus demand-
ing a manually prepared large dataset to train the system 
on. Importantly, all these tools focus on the detection of 
previously recognized types of USVs, categorizing them 
according to their highly variable structure and analyz-
ing their sequences. Therefore, while these tools may 
be very useful for researchers studying the information 
directly encoded by the structure and sequences of social 
vocalizations [41], they are less suitable as a measure 
for identifying changes and differences in social com-
munication, some of which may significantly differ from 
the commonly encountered USVs. Identification of such 
changes does not necessarily demand analysis of USV 
complex structure and sequences. Instead, it requires a 
simple, efficient, and automated methodology for a high-
throughput comparison of social vocalizations between 
groups of animals. The requirement from such method-
ology is that it would allow good enough sampling of the 
vocal signals to enable their accurate characterization 
and trustful comparison of these characteristics between 
the various animal groups.

Here we presented a novel approach for such com-
parisons that fits any type of vocalizations in the range of 
20–100 kHz, with no prior assumption. Instead of direct 
identification and analysis of discrete USVs, as used by 
previous tools, we analyze the frequency-power repre-
sentation of vocalization activity in a high-throughput 

Fig. 7 The abundance and repeatability of USFs associated with Shank3‑Het and KO rats correlate with their pitch. A Distributions of the sessions 
of each of the four genotypes examined based on the total number of USFs (excluding noise) that was detected in each session. B Proportions 
of sessions with more (red) or less (blue) than 600 USFs of all clusters for the Shank3‑Het and KO rats and their WT littermates, analyzed separately 
for dyads of novel animals and cagemates. C Proportions of sessions categorized according to the number of USFs emitted during the session, 
separately calculated for each of clusters 4–16 of Shank3‑Het, KO, and WT littermates (combining sessions of novel animals and cagemates). Note 
the gradual increase in the proportion of sessions with high numbers (>50) of USFs, specifically exhibited by Het and KO animals, for clusters 4–14. 
D Repeatability curves of each of the clusters shown in C, combined for Shank3‑Het and KO animals. Note the gradual decrease in curve width 
with cluster number, for clusters of high‑pitch USFs. E A statistically significant positive correlation was found between the number of sessions 
contributing to and the peak frequency of each of clusters 4–14, for Shank3‑Het and KO rats, combined. F A statistically significant negative 
correlation was found between the half‑width of the repeatability curve (shown in D) and peak frequency of each of clusters 4–14 for Het and KO 
animals, combined

(See figure on next page.)
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Fig. 7 (See legend on previous page.)
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manner. To this end, we adopted a methodology com-
monly used for human speech detection [31, 32, 42, 43] 
and embedded it in our software. The graphical user 
interface (GUI) of the open-source TrackUSF software 
enables loading a large number of audio clips and their 
sementation to small fragments (USFs) for analysis. Fol-
lowing the t-SNE analysis, TrackUSF enables USF clus-
tering either by an automated algorithm (DBSCAN) or 
using visually guided manual definition, or a combination 
of both, which adds to its friendly and flexible use. Fol-
lowing clustering, TrackUSF allows further analyses, such 
as PSD analysis, as well as the examination of USFs from 
any combination of clusters by their overlay on the spec-
trogram of a given audio clip. By analyzing short USFs 
instead of discrete USVs, TrackUSF gains independ-
ence with regard to the USV structure and sequence. 
This allows TrackUSF to be used for the analysis of any 
type of ultrasonic vocalization, with no prior assumption 
regarding its structure and sequence. Moreover, one can 
use TrackUSF for analysis of any dataset of any size, with-
out a requirement of training the software. Also, using 
TrackUSF demands only one pre-defined parameter, 
which is the threshold used for filtering out “silent” frag-
ments. These features make TrackUSF a highly versatile 
tool that can be easily adopted for various applications 
by researchers who are not specialized in analyzing ultra-
sonic vocalizations, for both laboratory and field studies. 
On the other hand, TrackUSF loses the temporal infor-
mation encoded by USV structure and sequence, hence 
may be less suitable for researchers investigating these 
aspects of vocalizations.

We tested the efficiency of TrackUSF by analyzing 
three distinct sets of vocalization types: mouse mating 
calls and rat social calls recorded in the laboratory and 
bat echolocation calls recorded in the wild. Notably, each 
of these vocalization types was recorded using a differ-
ent ultrasonic microphone (see the “Methods” section). 
In all cases (Figs.  2A, 4F, and 5A), we found that USFs 
representing non-vocal noise appeared in well-defined 
clusters, easily separated from all other USFs, which ena-
bled their automated exclusion from further analyses. 
The ability of TrackUSF to automatically and efficiently 
separate noise from vocalizations is a substantial advan-
tage over previous methods and spares the tedious man-
ual steps of de-noising, which are critical for analyzing 
these types of datasets. This feature is most practical for 
recordings in noisy natural settings, where noise type and 
level are constantly changing, as exemplified here by the 
analysis of bat calls in their natural habitat (Fig. 5C).

We found that aside from the noise clusters, USFs of 
other clusters represent genuine USVs of various types, 
with distinct clusters representing mainly USFs of differ-
ent frequencies (Figs. 2C, 4I, and 5D).

By comparing TrackUSF analysis of mouse and rat 
mating calls with either manual analysis or automated 
analysis with two recent computerized USV-based 
tools (DeepSqueak and USVSEG), we found that in 
both cases TrackUSF represented most manually 
defined USVs with at least one USF and that the per-
centage of identified USVs got higher with lowering 
the threshold and was comparable to the percentage 
of USVs detected by DeepSqueak. However, the cov-
erage of USV duration by TrackUSF-generated USFs 
was significantly lower than both computerized tools, 
which is one limitation of our system. This is partially 
due to USVs breaking to small fragments by TrackUSF, 
which left low-level segments in the middle of many 
USVs uncovered. On the other hand, TrackUSF yielded 
a very low level of false-positive detections (<1% in 
all threshold levels), while DeepSqueak generated on 
average 6.9% false-positive detections and USVSEG 
yielded very high levels of 10–100%. We conclude that 
while TrackUSF only partially covers USVs, it samples 
them good enough and very accurately. Accordingly, 
we found an excellent match between the PSD analyses 
of manually detected USVs and TrackUSF fragments, 
which was slightly better than DeepSqueak and much 
better than USVSEG. Moreover, the number of Track-
USF-generated USFs was in lineal correlation with the 
number of manually detected USVs. Altogether, these 
assessments suggest that TrackUSF may be used for 
accurate characterization of USVs and their compari-
son between animal groups at the quantity and fre-
quency domains.

To demonstrate the usefulness of TrackUSF for 
detecting modified social vocalizations in animal mod-
els of pathological conditions, we employed it to study 
social vocalizations during male-male interactions in 
Shank3-deficient rats [40]. These rats were previously 
reported to exhibit impaired social approach behavior 
following playback of appetitive ultrasonic vocalization 
[44]. TrackUSF revealed a significant number of clus-
ters (4–14) that were mostly enriched with USFs gen-
erated by Het and KO animals (Fig.  6A). These calls 
could not be simply identified as 22-kHz aversive calls, 
associated with aggressive behavior [18, 45–47], as 
their PSD peaks created a rather continuous spectrum 
between 25 and 45 kHz (Fig. 6B) and their duration var-
ied widely from brief (few tens of milliseconds; Fig. 6D) 
to extended (several hundreds of milliseconds; Fig. 6C).

Interestingly, the PSD peak frequency of clusters 
4–14 was found to be negatively correlated with the 
repeatability index, which serves to estimate the dura-
tion of the underlying USVs, and positively correlated 
with the number of sessions contributing USFs to these 
clusters (Fig. 7B). Thus, during male-male interactions, 
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Shank3-deficient rats seem to make enhanced use in 
a spectrum of vocalizations, leaning towards lower 
frequencies and longer durations (22-kHz-like calls). 
Such calls are rare in WT animals (Fig. 7A) and absent 
from vocalizations made by SD rats (Fig. 4D). Notably, 
in a recently published study, we have used TrackUSF 
to reveal a deficit in mating calls exhibited by Iqsec2 
A350V mice, a novel model of ASD. Thus, the modi-
fied vocalization revealed by TrackUSF may serve as a 
convenient and unique readout of modified behavior of 
various ASD animal models, which may be used to effi-
ciently probe the effect of possible treatments on it.

Conclusions
We presented a novel open-source computerized 
tool termed TrackUSF that enables automated high-
throughput analysis of ultrasonic vocalization activity. 
This tool, which avoids analyzing discrete USVs, is 
mainly suited for detecting differences in any type of 
ultrasonic vocalization activity between groups of ani-
mals. Since TrackUSF does not require any training and 
demands pre-definition of a single parameter only, it is 
easily usable by students and investigators who are not  
specialists in social vocalizations but rather would 
like to use it as a behavioral readout. We believe that 
this tool would enable large-scale analysis of modified 
social vocalization activity in animal models of patho-
logical conditions.

Methods
Animals
Mice
BalbC and C57BL/6J animals were bred in clean plastic 
chambers (GM500, Tecniplast, Italy) at 22°C and a 12-h 
light/12-h dark cycle (light on at 7 am) and received food 
and water ad libitum.

Rats
Subjects were naive Sprague Dawley (SD) male and 
female rats (8–12 weeks), commercially obtained (Envigo, 
Israel), and housed in groups of three to five animals 
per cage. Shank3-deficient rats (RRID:RGD_41404705) 
were a generous gift by Dr Joseph Buxbaum at the Icahn 
School of Medicine at Mount Sinai. They were bred 
in a local colony and housed under the same condition 
described above. Wild-type (WT), heterozygous (Het), 
and knock-out (KO) littermates were offspring of het-
erozygous mating pairs. All rats were kept on a 12-h 
light/12-h dark cycle, light on at 9 pm, with ad  libitum 
access to food and water.

All of the cages contained standard wood chip bedding 
and cotton wool bedding material. Behavioral experiments 
took place during the dark phase under dim red light. All 

experiments were approved by the Institutional Animal 
Care and Use Committee (IACUC) of the University of 
Haifa. No animal was excluded from the analysis.

Bats
Audio sampling was conducted during September–
November 2019 at the Hula Research Center in the upper 
Galilee, Israel (33° 06′ 47.1″ N 35° 35′ 08.6″ E). An hour 
before sunset, a tethered 12-m3 helium-filled Kingfisher 
aerostat (LITAS, Jacksonville, FL, USA) was launched to 
a height of 160 m above ground. Sessions were author-
ized by Israel’s civil aviation authority. Three “Song Meter 
SM4BAT FS” bioacoustics recorders (Wildlife Acoustics) 
were tied to the tether at heights of 50, 100, and 150 m 
above ground. The recordings were performed at a sam-
pling rate of 192 kHz (converted to 250 kHz for Track-
USF analysis), aiming to document any activity of R. 
microphyllum and P. pipistrellus within the vicinity of the 
aerostat from ground level to roughly 200 m. Peak activ-
ity times of R. microphyllum and P. Pipistrellus in the 
research area were noted from an hour before to 2 h after 
sunset. Accordingly, the aerostat was deployed during 
this time window.

Experiments
Mice
Vocal communications were recorded using a 1/4-inch 
microphone (Type 4939-A-011), connected to a pre-
amplifier (Type 2670) and an amplifier (Type 2690-0S1, 
Bruel & Kjaer) in a custom-built sound-shielded box. 
Vocalizations were sampled at 250 kHz with a CED 
Micro 1401-3 recording device (Cambridge Electronic 
Design Limited, Sunnyvale, CA).

In each session, a pair of mice were kept in their home 
cage and the cage was placed within a custom sound-
proof box to minimize background noise. The micro-
phone, inserted through the soundproof box lid, was 
suspended just above the home cage. The system was 
programmed to record 10 min every hour for 12 h that 
started after the first encounter between the animals. The 
audio clips were then analyzed offline in two stages (see 
below). Collectively, we recorded from 6 mouse pairs. For 
each of these pairs, one clip that comprised the highest 
amount of vocalizations among all other clips was used 
for the comparison with the data obtained by our Track-
USF software.

Rats
The experimental setup consisted of a black Plexiglass 
arena (50 × 50 × 40 cm) placed in the middle of an acous-
tic chamber (90 × 60 × 85 cm). A computer-connected 
high-quality monochromatic camera (Flea3 USB3, Point 
Grey), equipped with a wide-angle lens (Fujinon 6mm 
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fixed focal length C-mount lens, Point Grey), was placed 
at the top of the acoustic chamber, enabling a clear view 
and recording of the rat’s behavior using a commer-
cial software (FlyCapture2, Point Grey). Video record-
ings were carried out at a rate of 30 frames per second. 
Ultrasonic vocalizations were recorded using a con-
denser ultrasound microphone (CM16/CMPA, Avisoft) 
placed high enough above the experimental arena, so the 
receiving angle of the microphone can cover the whole 
arena. The microphone was connected to an ultrasound 
recording interface (UltraSoundGate 116Hme, Avisoft), 
which was plugged into a computer equipped with the 
recording software Avi-soft Recorder USG (sampling fre-
quency: 250 kHz; 16-bit format).

Bats
Audio recordings were manually analyzed using the Avi-
soft SASLab software (Avisoft Bioacoustic, Germany). In 
order to identify the different bat species, the terminal 
frequency of recorded echolocation signals was measured 
on screen with a cursor, from the spectrogram (FFT 256 
window length, with a Flat Top window). The two species 
reported here use very distinct call frequencies, so there 
is no difficulty identifying them: R. microphyllum emits 
multi-harmonic, quasi-constant frequency calls with most 
energy in the second harmonic around 25–28 kHz while 
P. pipistrellus uses wideband FM calls with terminal fre-
quencies ranging between 45 and 48 kHz [38, 48].

Audio analysis
Manual analysis of mouse mating calls
Audio clips were analyzed offline in two steps. In the first 
step, single syllables, defined as a discrete USV element 
separated from other single USV elements by at least 55 
ms [49], were manually determined on the spectrograms 
by a trained observer and fully extracted from the spec-
trograms. This allowed us to separate the audio files into 
two vectors: one containing emitted vocalizations with 
background noise and the second containing the inter-
syllable segments which contained only the background 
noise. Next, we performed a fast Fourier transform (fft) 
on both vectors and subtracted the later vector from the 
former to produce a cleaner PSD vector that was used for 
spectral analysis. All vectors of ultrasonic vocalizations 
were normalized to the peak value in the range of 30–100 
kHz. Thereafter, the second step of the analysis was set 
to determine the spectral and temporal characteristics of 
each syllable in order to evaluate the vocal repertoire of 
the recorded mice.

Manual analysis of rat male‑female calls
USVs recorded during 10-min sessions of free interaction 
between male-female couples of SD rats were manually 

analyzed using our previously published computerized 
tool HybridMouse [50]. Audio clips were loaded to the 
GUI of the Matlab-based software and a blind trained 
observer labeled manually the USVs on the presented 
spectrogram. This yielded a vector containing the emit-
ted vocalizations for each audio clip. Next, we performed 
a fast Fourier transform (fft) on this vector to produce a 
PSD profile that was used for spectral analysis. All vec-
tors of ultrasonic vocalizations were normalized to the 
peak value in the range of 20–100 kHz.

TrackUSF
Algorithm
Mel-frequency features represent the short-term power 
spectrum of a sound based on a linear cosine transform 
of a log power spectrum on a nonlinear Mel-scale of fre-
quency. In this method, the frequency bands are equally 
spaced according to the Mel-scale [31, 32, 42, 43]. In 
our study, we expanded the Mel-frequency Cepstrum 
approach to represent ultrasonic vocalizations using the 
Matlab function “mfcc” (https:// www. mathw orks. com/ 
matla bcent ral/ filee xchan ge/ 32849- htk- mfcc- matlab). 
We changed the lower and upper frequency limits to be 
between 15 and 100 kHz, with the number of cepstral 
coefficients enlarged respectively to 16. To analyze these 
features, we used dimensionality reduction by employ-
ing the t-Distributed Stochastic Neighbor Embedding 
(t-SNE) algorithm [51], an algorithm that is particularly 
efficient for the visualization of high-dimensional data-
sets. 3D t-SNE models each high-dimensional matrix by 
a point in a three dimensions space to such a degree that 
similar vectors are modeled by nearby points, while dis-
similar vectors are modeled by distant points with high 
probability. In our analysis, we used the function “tsne” in 
Matlab with the default algorithm “barneshut” and per-
plexity of 500 points.

The algorithm was embedded into a graphical user 
interface (GUI) written in Matlab (Additional file  1: 
Fig. S1 and Additional file  3: “TrackUSF user manual”). 
Through the GUI, the user chooses sets of audio files 
for analysis (WAV format), divided according to their 
group identity. The analysis is then run and outputs the 
MFCC analyzed data, the t-SNE analyzed data, and the 
audio files in a Matlab format (“.mat”). Next, the user can 
open those files for visualization of the data in 3D and 
for manually defining clusters on top of the t-SNE image 
result. A second option is to use the Density-Based Spa-
tial Clustering of Applications with Noise (DBSCAN) 
algorithm or to use a combination of both manual and 
automatic methods. In our analysis, we used the function 
“DBSCAN” in Matlab with the threshold for a neighbor-
hood search radius (epsilon) set to 1.5 and the minimum 
number of neighbors (minpts) set to 50. After defining 

https://www.mathworks.com/matlabcentral/fileexchange/32849-htk-mfcc-matlab
https://www.mathworks.com/matlabcentral/fileexchange/32849-htk-mfcc-matlab
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the clusters, the user can present the detected USFs on 
the spectrograms of the original data.

All variations of the software and its manual are depos-
ited in GitHub under the following links: https:// github. 
com/ shain etser/ Track USF.

Spectrograms were computed using the standard 
“spectrogram” function with a window of 512 samples, 
50% overlap, and a sample rate of 250kHz. Power spectral 
density (PSD) for the different clusters was performed 
using a short-time Fourier transform with the same 
parameters as for the spectrograms. First, PSDs were 
performed for each USF separately. Then, the mean PSD 
for each cluster was calculated by averaging the PSDs of 
all USFs from the same cluster.

Calculating the probability of USF occurrence relative 
to USFs from their own cluster or from other clusters was 
done in a time window of 6 ms for 0.5 s before and after 
each USF detection. The time window of 6 ms was cho-
sen after examining several other time windows, which 
gave poorer results.

Statistics
Data are presented as the mean ± SEM unless otherwise 
noted. Differences in the means of three or more groups 
were tested using analysis of variance (ANOVA) followed 
by Bonferroni post hoc tests, when a significant main 
effect was found. In case of violation of ANOVA model 
assumptions (including lack of normal distributions), the 
Kruskal-Wallis test was performed for comparing distri-
butions of the groups, followed by a post hoc Dunn test 
with Bonferroni’s adjustment, when a significant result 
was found. In the case of paired comparison between 
groups, the Friedman test was used, followed by a Wil-
coxon signed ranks test post hoc. When using a cutoff 
based on biological assumption, a chi-square test was 
performed. When significant results were obtained, addi-
tional chi-square tests were performed between each per 
of groups, adjusted by Bonferroni’s correction.
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