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Abstract
1.	 The use of weather radars to detect and distinguish between different biologi-

cal patterns greatly improves our understanding of aeroecology and its conse-
quences for our lives. Importantly, it allows us to quantify passerine bird migration 
at different scales. Yet, no algorithm to detect soaring bird flocks in weather radar 
is available, precluding our ability to study this type of migration over large spatial 
scales.

2.	 We developed the first automatic algorithm for detecting the migration of flocks 
of soaring birds, an important bio-flow phenomenon involving many millions of 
birds that travel across large spatial extents, with implications for risk of bird-
aircraft collisions. The algorithm was developed with a deep learning network for 
semantic segmentation using U-Net architecture. We tested several models with 
different weather radar products and with image sequences for flock movement 
identification.

3.	 The best model includes the radial velocity product and a sequence of two previ-
ous images. It identifies 93% of soaring bird flocks that were tagged by a human 
on the radar image, with a false discovery of less than 20%.

4.	 Large birds such as those detected by the algorithm pose a serious risk for flight 
safety of civilian and military transportation and therefore the application of this 
algorithm can substantially reduce bird-strikes, leading to reduced financial losses 
and threats to human lives. In addition, it can help overcome one of the main chal-
lenges in the study of bird migration by automatically and continuously detecting 
flocks of large birds over wide spatial scales without the need to equip the birds 
with tracking devices, unravelling the abundance, timing, spatial flyways, seasonal 
trends and influences of environmental conditions on the migration of bird flocks.
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1  |  INTRODUC TION

It is increasingly recognized that weather radars, which are primar-
ily designed to monitor meteorological processes for weather fore-
casts, detect trillions of insects, bats, and birds in the air (Gauthreaux 
et al.,  2008). Consequently, weather radars around the world are 
exploited to better understand different broad scale behaviours 
and movement of aerial organisms in detail, including quantifica-
tion of biomass fluxes (Dokter et al., 2018; Farnsworth et al., 2016; 
Hu et al.,  2016; Nilsson et al.,  2019; Van Doren & Horton,  2018) 
and mapping of stopover sites along migration flyways (Buler & 
Dawson, 2014; Cohen et al., 2021; Schekler et al., 2022). In addition, 
extracting biological data from weather radars allows us to manage 
human-wildlife conflicts such as flight safety (Ginati et al.,  2010; 
Kranstauber et al., 2022; Van Gasteren et al., 2018), crop damage 
(Markkula et al., 2008), risks due to collision with wind energy fa-
cilities (Cohen et al., 2022), and the dispersal of pathogens (Acosta 
et al., 2021) and pollinators (Wotton et al., 2019). These efforts mini-
mize financial consequences, provide economic incentives, decrease 
risks to human lives and conserve aerial animals (Bauer et al., 2017).

Collisions between birds and aircrafts are a serious aviation 
hazard, costing billions of dollars annually (Allan,  2000; Anderson 
et al.,  2015) and can have detrimental consequences for human 
lives, mainly during low-level flights, including take-off and landing 
(Van Gasteren et al., 2018). In 2002, it was estimated that at least 
350 people had been killed due to bird-aircraft collisions worldwide 
(Sodhi,  2002). High body-mass bird species are more hazardous 
to aircraft (Dolbeer et al., 2000), and therefore large birds such as 
vultures, cranes, pelicans and eagles have the highest potential of 
causing severe damage (Anderson et al., 2015; Dolbeer et al., 2000). 
For example, in the collision database of the Israeli Air Force, which 
includes data from 1968 to the present, with over 6700 documented 
collisions (data not published), the collisions are divided into three 
categories: minor, medium and severe strikes. The minor category 
includes damage in the range of 0–50,000 US dollars, without 
human injury, while the medium and severe strikes include damage 
of 50,000–2,000,000 US dollars and may include human injury and 
mortality. Inspection of this database revealed that about 80% of the 
medium and severe strikes of the Israeli Air force have been caused 
by large birds (body mass > 200 g).

Bird migration is a world-wide phenomenon where each spring 
and fall, billions of birds migrate between breeding and non-
breeding regions around the world. There are two basic flight strat-
egies of migratory birds over land. The first is by flapping, which 
is done mainly by small birds such as most passerines and waders 
(Hedenstrom,  1993; Newton,  2008), primarily during the night. 
These birds tend to spread across the migration flyway and com-
monly migrate over the sea. The second is by soaring-gliding flight, 
which is done mainly by large species with a relatively large wing sur-
face area relative to their body mass, allowing them to utilize rising air 
currents during migration while saving energy (Hedenstrom, 1993; 
Sapir et al., 2010). These large birds migrate primarily during the day 
when updrafts are available, usually avoiding flight over the sea and 

often do so in concentrated streams where topography favours the 
development of updrafts, (Newton, 2008). Further, many of these 
birds tend to flock and may form aggregations of thousands of birds 
(Leshem & Yom-Tov,  1996a). While for passerine migration, auto-
matic algorithms have been recently developed and applied (Buler & 
Moore, 2011; Dokter et al., 2011), resulting in significant progress in 
our knowledge regarding this migration (Cabrera-Cruz et al., 2018; 
Cohen et al., 2021; Dokter et al., 2018; McLaren et al., 2018; Nilsson 
et al., 2019; Rosenberg et al., 2019), no algorithm has been devel-
oped yet for automatic detection of soaring bird flocks.

Israel is located next to the largest marine ecological bar-
rier in the Palearctic-Afrotropical bird migration system, the 
Mediterranean Sea, as well as next to another large water body, the 
Red Sea. Because soaring birds depend on updrafts for their migra-
tion, they tend to avoid long sea crossings (Newton, 2008) resulting 
in high densities and diversity of soaring birds migrating through 
Israel (Shirihai,  1996). For some species, the entire world (Lesser 
Spotted Eagle and Levant Sparrowhawk) or Palaearctic (White 
Pelican) population passes over Israel during migration and for other 
species (White Stork and Honey Buzzard) a high percentage of the 
population flies through the country (Leshem & Yom-Tov,  1996a; 
Shirihai, 1996). While Israel is a very small country (the 46th smallest 
country out of 195; United Nations Statistics Division, 2021), it has 
a very active air force (in terms of flight hours; FlightGlobal, 2022). 
This results in an intense conflict due to the high risk of collisions 
between birds and military aircrafts. Countries, like Israel, that im-
plemented migration warning systems have shown considerable 
decrease in the number of bird-aircraft strikes over the last few de-
cades (Van Gasteren et al., 2018). Bird strikes can roughly be divided 
into local (during take-off and landing) and en route (on other low-
altitude flights) risks (Van Gasteren et al., 2018). Locally, the popula-
tions of birds on airfields can be controlled or manipulated to some 
extent in order to reduce the collision risks. However, this is impos-
sible for en route risks that involve populations of migratory birds. 
Therefore, to reduce the risk of bird strikes, birds and aircraft must 
be separated by dynamically detecting bird distribution and provid-
ing near real-time warning to aircraft to avoid hazardous areas.

The aim of this study is to develop an automatic algorithm that 
will identify soaring bird flocks in weather radars. We used a deep 
learning method for segmentation (U-Net) and tagged thousands 
of images to create a database for training and testing the model. 
Although weather radars have been used in ornithological research 
for several decades, to the best of our knowledge, this is the first 
study that distinguishes soaring bird flocks in weather radar echoes.

2  |  MATERIAL S AND METHODS

2.1  |  Radar data

We obtained raw data from two single-polarization weather radar 
stations operated by the meteorology unit of the Israeli Air Force at 
Mt. Meron (MER) in Northern Israel and Mt. Aricha near the town 
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of Mitzpe Ramon (RAM) in the south of the country (Figure 1). Due 
to the proximity of these two stations to international borders, MER 
radar also covered some areas in Lebanon and Syria while the range 
of RAM radar also included parts of the Egyptian Sinai Peninsula 
(Figure 1). The radars emit C-band electromagnetic waves and re-
cord returned signals, which include a set of three gridded data 
products including reflectivity factor, radial velocity, and spectrum 
width (WRADH). Reflectivity factor is proportional to the power of 
the received signal of objects in the atmosphere, radial velocity is 
computed from the Doppler spectrum frequency shift of targets 
within the radar sampling volume and provides information about 
the velocity of the targets, and spectrum width is a measure of the 
variability of Doppler velocities within the sampling volume (Doviak 
& Zrnić, 2006). The polar resolution is ~125 m in range and 1° in azi-
muth. In the years of the study (2018–2019), the radar reflectivity 
product was highly contaminated by clutter and other radar trans-
missions in the surrounding area, and therefore the reflectivity of 
bird flocks was barely visible in this product. Instead, we used the 
radial velocity product, as preliminary analysis of the detection of 
flocks using this product showed that the pattern of migrating flocks 
was the clearest. We used bioRad package version 0.5.2 (Dokter 
et al.,  2019) to project the polar volume scan to a georeferenced 
Cartesian grid in the form of a plan position indicator (PPI) with a 
range of 50 km from the radar.

Soaring birds, such as birds of prey, storks and pelicans, have 
been measured flying at altitudes of several hundreds of meters 
up to several kilometres above ground level (AGL; Kerlinger & 
Gauthreaux,  1985; Leshem & Yom-Tov,  1996b) with average mi-
gration heights of 640 m AGL (Kerlinger & Gauthreaux, 1985). Both 
RAM and MER are relatively high (868 and 1214 m above sea level, 
ASL, respectively) and the radars are positioned high above their 
surrounding areas. In the range of 50 km from each radar, the aver-
age elevation of the ground is 320 m ASL in MER (548 m below the 
radar height) and 412 m ASL in RAM (802 m below the radar height). 

Therefore, we used the lowest positive tilt angle for optimally de-
tecting the flocks in the radars' ranges (0.0 or 0.4 as the screening 
protocol changed between different operational modes and years 
due to changes in radar settings; we used the lowest positive angle 
available).

2.2  |  Flock detection

First, we wanted to be able to manually detect and distinguish 
patterns of migrating soaring bird flocks from other targets de-
tected by the radars, such as wide-front passerine migration, 
ground clutter, and rain clouds. For this purpose, we used citizen 
science reports from two main sources: (1) eBird (https://ebird.
org/israe​l/home) reports from Israel and (2) reports from a dedi-
cated WhatsApp group for reporting soaring bird migration that 
included birders from all over the country. We scanned thousands 
of radar images of radial velocity on days with reports of intense 
soaring bird migration. The movement of flocks of migrating birds 
observed in the radial velocity radar images looked like lines mov-
ing in the direction of migration (Figure  2c), which is highly dis-
tinguishable from the pattern of passerine migration (Figure  2b) 
and rain clouds (Figure 2a). After we identified the pattern of bird 
flocks in the radars, we collected radar data containing soaring 
bird flocks during two autumn migration seasons (2018 and 2019) 
from both radars. We first scanned 279 days of autumn migration 
between the 1st of August and the 31st of November from the 
two radars. The scans included only diurnal migration, from sun-
rise to sunset. Each day contained about 200 images. From these 
data, we detected 45 days in which the migration pattern of bird 
flocks was noticeable in the radar images. We used a total of 3500 
images with visible migration of bird flocks from these 45 days. 
We used the online open source data labelling tool LabelStudio 
(https://label​stud.io/) and tagged the soaring bird flocks by tag-
ging the area of the flocks with a brush (and not by pixel). Flock 
identification was done through a sequence of several images that 
facilitated the detection of flock movement. Therefore, the tag-
ging process identified the flocks by their spatial pattern and their 
movement, and the tagging was done separately in each image. 
The tagged images were considered the ground truth for the train-
ing and the testing steps of the algorithm development.

2.3  |  Training and testing data

In addition to bird flock identification, it was important to us that 
the algorithm could distinguish soaring bird migration from other 
patterns in the radar images such as rain clouds and passerine 
migration. Because soaring birds depend on thermals for migra-
tion, rain clouds tend to suppress migration (Newton, 2008) and 
therefore we had only a few examples of rain clouds in the im-
ages containing soaring birds, and usually they were relatively 
small clouds. To create data to train the model (see below) that 

F I G U R E  1  Satellite imagery of the study area with the weather 
radars (green triangles), their 50-km-radius coverage (white circles) 
and international borders (black lines). MER, Mt. Meron; RAM, 
Mitzpe Ramon.
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would include additional images of rain clouds, we added im-
ages containing rain clouds from radar data collected during 
December 2019, before December, rain in Israel is limited. In ad-
dition, passerine and soaring bird migration occur at different 
parts of the day. Soaring birds migrate from about 2 h after sun-
rise to about an hour or two before sunset (Newton, 2006), while 
passerine migration typically ranges from sunset to sunrise. To 
include passerine migration in our model, we added images from 
spring and autumn 2018 mainly containing passerine migration. 
The migration of flocks of soaring birds is not constant over 
time and intense migration usually takes place on only several 
days during the migration season (Leshem & Yom-Tov,  1996a). 
Therefore, there are many days during the migration period 
when no specific patterns are evident in the radar images and we 
wanted the algorithm to include this option as well. Therefore, 
we added images that did not contain any specific patterns, se-
lecting images from June 2019, after the end of the spring migra-
tion of soaring birds. In total we created 7509 images for the 
model. Consecutive images from the same day can be similar 
because flocks tend to concentrate in the same areas where 
there is strong uplift (Newton, 2008). To prevent the model from 
identifying birds by taking into account similar (consecutive) im-
ages, we divided the data into training and testing datasets by 
day. Therefore, the test images contained images from days that 
were not used previously for training. First, we randomly chose 
days for testing such that the testing dataset consisted 20% of 
the data, and the training dataset included the remaining 80% of 
the data. After choosing the best model, we estimated its per-
formance by a 5 folds cross validation with proportion of 20%–
30% of test data (depending on the number of images in each 
day). We used only the lowest positive scan for model training 
to facilitate bird flock detection as the radars were positioned 
high above their surrounding areas. To test the model on higher 
elevation scans, we tagged a few examples from a scan with a 1° 
angle of elevation. We did not find patterns of soaring migration 
birds on images from scans higher than 1° elevation.

2.4  |  U-Net

In semantic segmentation, we are interested in classifying each pixel 
in the image. The model calculates the probability of each pixel in 
the image belonging to a certain class and classifies it to one of the 
categories based on the highest calculated probability. The semantic 
segmentation of the image is the process of relating each pixel in the 
image to the correct object. Over the last few years, deep learning-
based approaches have outstandingly improved the performance 
of image segmentation problems. U-Net, proposed by Ronneberger 
et al. (2015) is one of the most popular deep learning framework for 
semantic segmentation, widely use in the medical field and recently 
was also used for radar segmentation problems (Jiang et al., 2022; 
Nie et al., 2021). The network of U-Net consists of contracting and 
expanding paths in a symmetric structure which create a u-shaped 
architecture. The contracting path contains repeated operations of 
convolutions, a ReLU activation function, and down-sampling with 
max-pooling, as used in other typical CNNs. During the expanding 
path, on the other hand, the pooling operations are replaced with 
up-sampling operators that increase the resolution of the output. 
During the contraction, the network learns high resolution features 
and these are combined through skip-connection operation with the 
up-sampling output, and as a result, high resolution information is 
localized in the expanding path and the network can learn a more 
precise output. This network works well with few training samples 
and is able to utilize global location and context information at the 
same time.

2.5  |  Trained models

We tested the performance of five different models. We started 
with radial velocity radar images, where the migration of the flocks 
was the clearest. In the second model we added the radar param-
eter WRADH as used in other deep learning methods for radars (Lin 
et al., 2019). While tagging the images, it helped to look at previous 

F I G U R E  2  The different patterns observed in the MER radar with the radial velocity parameter. The date and time of the images are 
shown at the bottom of each image. (a) rain clouds, (b) passerine migration and (c) soaring bird flock migration. MER, Mt. Meron.
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images for detecting the flock's movements. Therefore, in the third 
model, we used the radial velocity parameter and added the previ-
ous image but only if the time gap between the previous and current 
images was less than 7 min. In the fourth model, we used two previ-
ous images of the radial velocity (again, only if the time gap between 
both of the images was less than 7 min), and in the fifth model, we 
used three previous images.

2.6  |  Evaluation method

First, we used three metrics to evaluate our model on a pixel level: 
Accuracy, F1 score and AUC. Accuracy is the fraction of the correct 
predictions from the total number of predictions. This measure can 
be biased by the distribution of classes, and in our case, because 
most or all of the pixels in an image were negative (without soaring 
bird migration), a naïve classifier that predicts all negatives will “per-
form” better. Therefore, other metrics are needed as well for bet-
ter evaluating the model performance. The F1 score is the weighted 
average of precision and recall, where precision is the ratio of cor-
rectly predicted soaring bird flock observations (TP) to the total pre-
dicted positive observations (TP + FP) and recall (which is a synonym 
for TPR) is the fraction of true soaring bird flocks that is predicted 
by the model to be flocks (TP/TP + FN). FPR is the fraction of “not 
soaring bird flocks” that is predicted to not be flocks (FP/FP + TN) 
and ROC curve plots TPR versus FPR for varying probability thresh-
olds (Fawcett,  2006). The AUC metric summarizes the area under 
the ROC curve and aggregates a measure of performance across all 
possible classification thresholds (Fawcett, 2006). In addition to the 
common evaluation methods by pixel, we were interested in evalu-
ating how many flocks of migrating birds the model correctly iden-
tified. The tagging method was not by pixel but by a brush which 
marked the contour of the flocks (Figure  3). Therefore, to assess 
the performance of our model, after getting first results from the 
pixel level metrics, we evaluated the models on a contour level. For 
this purpose, we compared the contours we tagged to the contours 
found by the model. We compared the centres and the areas of the 
contours in the ground truth and the predicted images, but because 
one flock of birds can be tagged as a single long line or as few smaller 

dots (Figure 3), we allowed the following margins during the com-
parison: First, we defined a size criterion by which we allowed the 
contours to vary between one third of the size of the compared con-
tour and three times the size of the compared contour. Second, we 
defined a location criterion by which we allowed the centre of the 
contour to be in a square of 30 pixels to each direction from the cen-
tre of the compared contour (the size of each image was 256 × 256 
pixels). For example, if the model predicted a contour (soaring bird 
flocks) with a centre 10 pixels to the side of a contour in the ground 
truth image, and with a size twice that of the contour in the ground 
truth image, we defined it as a contour predicted correctly. For the 
evaluation, we counted how many contours were correctly identified 
(TP) in each image, how many contours the model did not predict 
(FN), and in addition, how many contours the model predicted that 
were not in the ground truth image (FP). At the contour level, we do 
not have a TN because the area that is not a contour (not predicted 
as soaring bird flocks) cannot be counted as such. Consequently, we 
used two other metrics to evaluate our model at the contour level: 
the true positive rate (the rate of flocks correctly detected by the 
model; TPR) and false positive detected rate (the rate of flocks the 
model incorrectly predicted; FPDR). The FPDR is not the usual met-
ric of FPR (FP/FP + TN) because we do not have the TN, but it is the 
rate of falsely predicated soaring bird flocks (contours) divided by 
the total number of the predicted contours (FP/FP + TP) and it repre-
sents the rate of flocks the model incorrectly predicted.

3  |  RESULTS

The best model for detecting soaring birds is the fourth model 
which used the radial velocity parameter and two previous images 
(Table 1). This model had the highest AUC and TPR scores, and rec-
ognized 93% of the labelled soaring bird flocks when comparing 
all the models with the same test data. After choosing this model, 
we run this model with a 5 folds cross validation, and got TPR of 
0.83 ± 0.1 and FPDR of 0.15 ± 0.15. The second-best model was the 
fifth model which included the radial velocity parameter and three 
previous images (Table 1). This model had the highest F1 score (but 
not significantly different from the fourth model) and the second 

F I G U R E  3  Example of two ways to 
tag the same image correctly from RAM 
radar. On (a) with small dots and on (b) 
with longer lines. We created a method 
to evaluate the success of the model by 
contours which considers both ways of 
tagging. RAM, Mitzpe Ramon.
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best TPR. As expected from our negative-biased data, all of the mod-
els were characterized by high accuracy scores of 0.98–0.99. Adding 
the WRADH parameter did not improve the model performance.

Examples of the predictions made by the chosen fourth model 
compared with the tagged ground truth images are shown in 
Figures 4 and 5 for the MER and RAM radars, respectively. For model 
training, we used only the lowest positive angle of scan because of 
the relatively high elevations of the radars. Soaring bird migration 

at higher elevations was harder to detect, and it was even harder to 
find consecutive images with patterns of soaring flock migration (the 
model needs three consecutive images). When we did find soaring 
bird migration patterns in the one-degree scans, they looked similar 
to flocks in days with scarce migration. Despite these limitations, 
we examined our model with higher angle scans and found that the 
model predicts the migration pattern with similar success as ex-
pected (Figures 4 and 5).

TA B L E  1  The performance of the different models at the pixel and contour levels. In the case of the best model (in bold), we ran it again 
with a five-fold cross-validation (the results in parentheses).

Model

Pixel level Contour level

Accuracy F1 AUC TPR FPDR

1. Radial velocity 0.99 0.58 0.76 0.81 0.15

2. Radial velocity + WRADH 0.99 0.53 0.72 0.79 0.14

3. Radial velocity + previous image 0.98 0.37 0.78 0.63 0.11

4. Radial velocity + 2 previous images 0.99 0.61 0.85 0.93 (0.83 ± 0.1) 0.2 (0.15 ± 0.15)

5. Radial velocity + 3 previous images 0.99 0.62 0.79 0.86 0.15

F I G U R E  4  Example of semantic segmentation results for the MER radar from the 28 August 2018 at 11:44 AM. On this day, many flocks 
of Honey Buzzards migrated through Israel. The left image is the mask ground truth with red marks of tagged soaring bird flocks over radial 
velocity radar image, the middle one is the estimated mask produced by the model with blue marks over radial velocity radar image, and the 
right image is the estimated mask produced by the model (blue) over the mask ground truth (red). The first row is for the 0° scan and the 
second row is for the 1° scan. MER, Mt. Meron.
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4  |  DISCUSSION

The ability to detect and distinguish between different biological 
patterns that are created by various phenomena in weather radars 
has an enormous effect on our understanding of aeroecology and its 
consequences for our lives (Acosta et al., 2021; Bacciu et al., 2019; 
Cohen et al., 2022; Nilsson et al., 2021; Van Doren & Horton, 2018). 
In this study, we developed the first automatic algorithm for detect-
ing flocks of migrating soaring birds, an important biological phe-
nomenon involving many millions of birds that travel across large 
spatial extents. Soaring birds migrate all around the world and 
therefore automatic detection of their migration with weather ra-
dars will allow us to study this amazing phenomenon by quantify-
ing the birds' abundance and spatial and temporal distribution, as 
well as by exploring different factors affecting them. Importantly, 
large soaring birds pose the highest risk for flight safety (Dolbeer 
et al.,  2000) and therefore this algorithm can have huge impacts 
on the efforts to reduce the risk of bird-strikes with minimal added 
costs. This can be done by running the algorithms on already col-
lected radar images, extracting flock distributions in time and space 
and analysing how they are affected by different environmental con-
ditions (e.g. rain and wind; Shamoun-Baranes et al., 2010). Predicting 
the phenology and spatial and temporal distributions of migrating 

bird flocks will facilitate separating aircrafts from birds in time and 
space. Furthermore, integration of the algorithm in dynamic warning 
schemes may allow near-real-time warning of bird flocks identified 
by radars and dynamic mapping of bird-strike risks at high spatial and 
temporal resolution.

While tagging the images, in many cases, it was hard to distin-
guish the soaring migration pattern when considering only a single 
radar image, and the flock signal became clearer when looking at 
a sequence of images due to its movement. Using temporal infor-
mation to improve models for extracting biological scatter from 
weather radars was also suggested by Lin et al.  (2019) to improve 
MistNet performance. Therefore, it is not surprising that the two 
best models are the ones with two and three previous images in a 
sequence, allowing the machine to learn the pattern of movement 
which aids in the process of flock identification.

According to its performance, the best model is the fourth model 
(with the radial velocity parameter and two previous images). This 
model detected 0.83 ± 0.1 of soaring bird flocks that were detected 
by a human and has 0.15 ± 0.15 FPDR. It is nevertheless important 
to note that it is possible that some of the flocks that the model did 
find and that were not tagged, are not an error of the machine but 
rather were not detected by the person who tagged the images and 
thus missed these flocks. In addition, from the applied perspective 

F I G U R E  5  Example of semantic segmentation results for the RAM radar from the 24 September 2018 at 10:43 AM. See description from 
Figure 4. RAM, Mitzpe Ramon.
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of this work, considering flight safety, it is more important to find 
the highest percentage of flocks in the sky, and to pay the cost of 
detecting a few false positives along the way.

Extending the success of deep learning-based image semantic 
segmentation techniques to the video domain has recently become a 
major focus in studies of computer vision (Wang et al., 2021). Further 
improvement of the algorithm may include deep learning methods 
for video semantic segmentation while creating a video from a se-
quence of images from the radar. In addition, this study uses polari-
metric weather radars while in many western countries the common 
radar nowadays is a dual-pol radar. Using dual-pol weather radar 
products could substantially increase the performance of the model 
as algorithms that include dual-pol products are more efficient in 
identifying birds, precipitation, and ground clutter than unipolari-
metric ones (Radhakrishna et al., 2019). The dual-pol radars emit and 
detect radio waves both in the vertical and the horizontal polariza-
tions (Stepanian et al., 2016) which provides information regarding 
the object shape (height-to-width ratio) and uni-formity within a 
pulse volume. This information helps to discriminate different types 
of objects, including birds and insects (e.g. Melnikov et al.,  2015; 
Stepanian et al., 2016) and improved the accuracy of separating dif-
ferent hydrometeor types (Kilambi et al., 2018; Ye et al., 2015). In 
addition, adding the reflectivity parameter to the model, which was 
not relevant in our case as a result of high noise of the parameters, 
can also improve the model results as most algorithms for detecting 
birds in weather radars use this parameter (Buler & Dawson, 2014; 
Dokter et al.,  2011). We note that the algorithm we developed is 
used to detect soaring bird flocks during migration, and in Israel most 
of this type of migration involves raptors or large water birds such 
as cranes, storks and pelicans that are primarily soaring migrants. 
Although the migration of geese and other large birds that are pri-
marily flapping migrants is rather scarce in our region, this algorithm 
is probably capable of detecting the migration of flapping flyers that 
migrate in flocks as the pattern of this type of migration appears 
similar in radar images. Yet, it might require some fine-tuning of the 
model with tagged data.

The existing methods for researching soaring bird migration in-
clude mainly different kinds of telemetry, primarily using GPS tags 
(Fielding et al., 2022; Kumar et al., 2020; Vignali et al., 2022). These 
methods allow tracking of up to several dozen individuals from a 
certain population due to financial and logistical challenges. In ad-
dition, bird tagging might affect bird flight biomechanics and could 
hamper migration performance and overall fitness (Arlt et al., 2013; 
Costantini & Møller,  2013). Studying soaring bird migration using 
weather radars with the proposed algorithm can help overcom-
ing one of the main gaps in the study of bird migration (Robinson 
et al., 2010) by simultaneously following many individuals over large 
spatial scales without the need to equip them with tracking devices. 
Importantly, where wide-spread radar networks are available (e.g. 
most of U.S.), the tracking of flocks could be done over hundreds and 
even thousands of kilometres.

More importantly, the model we describe also provides a plat-
form for the construction of predictive modelling of soaring bird 

migration, producing quantitative, spatially explicit forecasts by 
combining the results from this model with atmospheric parameters, 
as already done in the case of passerine migration (Van Doren & 
Horton, 2018). Such predictions may allow better use of the services 
migratory soaring birds provide and could reduce their negative con-
sequences, such as collisions with aircrafts. Towards this end, our 
model can be used to quantify the characteristics of migrating soar-
ing bird flocks, create long-term and large-scale monitoring tools, 
as well as forecast migration across continents (Bauer et al., 2017). 
Our algorithm is the first model allowing automated quantification 
of flocks of soaring migrating birds. From previous observations (not 
published), we estimate that this algorithm can detect a flock of soar-
ing birds from a size of about 30 individuals but furtherer validation 
is needed for accurate estimation of bird flock detectability in radar.

Birds of prey, which migrate by soaring, are one of the most sen-
sitive group to wind turbine related mortality (Desholm, 2009), and 
because their migration tends to take place in a few peak migration 
days (Leshem & Yom-Tov,  1996a), a predictive model can mitigate 
this mortality by shutting down the turbines on these specific occa-
sions. In addition, birds of prey suffer from illegal poaching, which 
poses the highest threat, in terms of percentage of the total popu-
lation, to different raptor species (Brochet et al., 2019). Therefore, 
predicting days with intense migration can be an efficient way to 
substantially reduce raptor mortality by concentrating efforts for 
stopping illegal poaching to specific days. Data on the location and 
densities of soaring bird migration are essential for informed conser-
vation of soaring migratory birds and for flight safety. Unfortunately, 
due to policy changes, access to radar data repositories that are es-
sential for these analyses is becoming limited in Europe (Shamoun-
Baranes et al., 2021), substantially hindering our ability to quantify 
biodiversity changes and identify their causes and consequences.
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