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During early development, juvenile animals need to acquire a diverse behav-
ioural repertoire to interact with their environment. The ontogeny of animal
behaviour, is paced by the motivation to improve, e.g. internal clocks, and lim-
ited by external constraints, e.g. weather conditions. We here evaluate how
naive Egyptian vultures (Neophron percnopterus) improve in locomotor per-
formance, measured as daily maximum displacement, prior to their first
migration under three different time constraint regimes: we compared wild
hatched vultures, migrating one month after fledging, with captive-hatched
vultures, released in spring four months or in winter nine months before
migration. We found that the time until migration paced the development of
movement behaviour: wild birds rapidly increased displacement distances
within the first twoweeks after fledging, while spring andwinter released vul-
tures delayed movement increases by two and four months, respectively.
Under relaxed time constraints captive-hatched vultures displayed diverse
functional forms of performance enhancements and therefore great variability
in individual ontogeny of movement behaviour. While weather conditions in
winter could limit flight movements, some birds indeed moved immediately
after their release, indicating that weather may not be limiting. Our findings
promote the idea that relaxed ecological constraints could uncover hidden
phenotypic flexibility in ontogeny, which could present a greater potential
for adaptability under environmental change than currently expected.
1. Introduction
Animals flexibly adjust their behaviour or acquire new behaviours to cope with
prevailing and changing environmental conditions [1,2]. Juveniles in particular
need to acquire and master a set of specific behaviours to successfully interact
with their biotic and abiotic environment, enabling them to find resources,
secure survival and ultimately to reproduce. The ontogeny of a single behaviour
describes the enhancement in performance from a naive, untrained state to a
trained state [3]. This process can be innate (i.e. genetically determined), or
acquired through social or individual learning [4,5]. In addition, environmental
constraints are expected to moderate the timing and pace of performance
enhancement in juvenile or naive animals [6]. Specifically, animals facing severe
stress or strict constraints, such as high predation pressure, need to improve
their performance more rapidly than animals facing more relaxed conditions
[7]. Moreover, under relaxed constraints, we expect the emergence of individual
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Figure 1. Potential relationships between elapsed time and increases in per-
formance. Learning with experience can take different shapes: linear (red),
asymptotic (blue), exponential growth (yellow) or sigmoidal (green).
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variation in performance and specifically high between-indi-
vidual variability in the rate of performance enhancement
[8]. This prediction follows a more general hypothesis that
environmental constraints limit phenotypic variability. For
example, in the absence of selective constraints in the form of
predation or food limitations, populations express greater
among-individual variability than under heightened predation
pressure or food stress [9–11]. Additionally, environmental con-
ditions that are rarely encountered by a population may allow
for increased phenotypic variation because no past selection
has been asserted under these novel conditions [12]. Yet, it is
still unknown to what extent environmental constraints
indeed determine the ontogeny of behaviour in the wild and
whether predictions of increased phenotypic variability under
relaxed constraints also hold true for behavioural ontogeny.

To capture the full ontogeny of a behaviour we need to
repeatedly assess behaviour over discrete time steps, starting
with its first occurrence. Movement data can provide a
unique opportunity to record spatial behaviours continuously
over time from the first steps, through immaturity into adult-
hood [4,13,14]. Thereby, enhancement in performance over
time can be approximated using simple mathematical func-
tions. In experimental behavioural biology, performance
curves (also referred to as learning curves) have been used
to describe task-performance increases in laboratory-based
operant conditioning paradigms [15,16]. We can distinguish
four primary pathways: linear (figure 1, red line), a consistent
performance enhancement over time; asymptotic, an exponen-
tial rise to limit (figure 1, blue line) where improvement is
rapid in the beginning but slows over time and eventually pla-
teaus [17]; exponential (figure 1, yellow line), a slow rate of
improvement which accelerates over time; and sigmoidal
(figure 1, green line), performance enhances slowly in the
beginning, followed by a period of rapid performance increase
up to a limit, where performance plateaus and shows no
further improvement [15]. Different functional forms of per-
formance curves reflect, for example, whether an easy or
complicated task is being learned, where the latter requires
more repetitions to reach proficiency. While on the population
level, performance curves often take a gradually increasing
shape, substantial among-individual variation in learning
speed and terminal performance ability have been documen-
ted [6,15,18]. However, whether individuals of the same
species can respond to a common problem with different
functional forms of performance enhancements has not been
investigated yet.

Here we use a unique dataset of individual-based daily
flight movements of juvenile Egyptian vultures (Neophron perc-
nopterus) collected from fledging until the start of their first
migration to study the development of movement behaviour
prior to first migration. Specifically, we compared three
groups of vultures that differed in the time constraints between
fledging and migration, the associated prevailing weather
conditions, and rearing type. We were specifically interested
in whether vultures with more time between fledging and
migration would show increased phenotypic variability in
their ontogeny of movement. Environmental cues such as
photoperiod, so-called zeitgebers, synchronize the bird’s
internal clock to the annual rhythm and indicate, for example,
the timing of migration [19]. For juvenile animals, the onset of
migration represents a major target for the development
of movement behaviour: long before the actual onset of
migration, juveniles need to start improving their movement
capacity in order to reach a movement performance that is suf-
ficient to master the long daily distances characteristic for
migration [20,21]. The time between a juveniles first movement
and the start of its first migration, i.e. the time constraint to
master movement, can vary tremendously from days to
years, even within species [22]. In many avian species, the
first migration occurs within weeks after fledging and becom-
ing independent [23]. For migratory bird species, first-time
migration is the period in which most mortality occurs [24–
26] and higher pre-migratory flight experience has been associ-
ated with increased survival [27] suggesting a strong selective
pressure for birds to start flying as early as possible. We, there-
fore, expect environmental cues related to migration to act as
internal clock (zeitgeber), which triggers the motivation to
move. Hence, we expect the time between fledging and
migration onset to pace the ontogeny of movement behaviour.

The Egyptian vulture’s primary movement mode is soar-
ing-gliding flight, where birds exploit air updrafts (thermals)
created by the heating of the ground to gain height at lowmeta-
bolic cost [28–30]. Soaring enables them to cover daily
distances of 140–300 km during migration [31] and routine
daily movement distances of sub-adult Egyptian vultures
(i.e. individuals which have completed one migration cycle)
in their summer range are around 30–35 km (electronic sup-
plementary material, analysis S3). Best conditions for soaring
flights occur in the hot dry summer months while thermals
are less strong in the cooler, rainy winter months, limiting the
birds’ capacity to move over long distances. Previous studies
suggest that this flight mode requires a longer learning
period [32]. For example, red kites (Milvus milvus) initially
use an active, flapping flight mode and only over time acquire
soaring-gliding flight [20], and juvenile Eurasian griffon vul-
tures’ (Gyps fulvus) flight efficiency is lower than that of
adults, in particular under challenging wind conditions [33].

We evaluated how flight performance, measured as maxi-
mum displacement from the daily roost, increased over time,
from fledging to the start of the first migration in three groups
of Egyptian vultures (figure 2a): (1) wild hatched juveniles
fledging in summer approximately 1 month before migration;
(2) vultures hatched in captivity and then released into the
wild in spring, 4 months prior to migration; and (3) vultures
hatched in captivity and released into the wild in winter, 9
months prior to migration. We expected that the three
groups differ in their ontogeny of movement behaviour due
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Figure 2. We obtained tracking data of 20 wild hatched and 25 captive hatched Egyptian vultures (Neophron percnopterus) and quantified maximum daily dis-
placement between fledging/release and the start of migration. (a) Wild hatched vultures (orange) fledged between July and August and departed on their first
migration between August and September. Captive hatched vultures were released in spring (brown) or winter (green) and departed on their first migration 4 or 9
months after their release. (b,c) At the median group level, wild vultures showed an asymptotic increase in displacement distance between fledging and departure
on migration (grey area showing range of migration departure dates) while spring and winter released vultures delayed initial increases in movement and showed
exponential and sigmoidal performance increases, respectively. (d ) The median absolute deviation in displacement distance over a three-day moving window (km)
was higher in the spring and winter released birds, especially with increasing time since release, compared to the wild hatched birds. Models were fitted on log
transformed maximum daily displacement distances and hence y-axes are on the log scale, while labels are shown in kilometre units to aid interpretation. Dots in
panel (c) are showing the raw daily displacement data, dots in panel (d ) represent the median absolute deviation in displacement over a three-day moving window,
the heatmap in panel (c) shows the density distribution of the raw data from low density (blue) to clustered high density (red), lines (b,c,d) are showing model
predictions with 95% confidence intervals (b,d).
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to systematic differences in the time constraints imposed
on them by the timing of migration. However, we acknowl-
edge that time constraints potentially are confounded with
weather and rearing conditions. Birds released in winter
experience less ideal flight conditions (fewer thermals)
during early ontogeny, potentially constraining their capacity
to move while birds released in spring and wild hatched
birds meet better weather conditions during early ontogeny.
In addition, systematic differences imposed by different
rearing conditions, e.g. no parental learning of flight in cap-
tive reared birds but a release in cohorts of similarly
inexperienced birds at a supplemental feeding site, and
different maturation state due to a different age of wild
fledged birds and released birds, could confound our con-
clusions regarding time constraints. We discuss the merit of
each of these mutually non-exclusive drivers of movement
ontogeny based on a series of population- and individual
level analyses. If time constraints affect movement ontogeny,
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we expect that on the population level, wild birds hatching 1
month before migration departure, will show immediate and
rapid increases in movement distances resembling an asymp-
totic performance curve while birds released 4 and
particularly 9 months before migration would delay initial
increases in movement. Because we assume that time to
migration drives ontogeny of movement, we expected that
birds released 9 months before migration departure, would
delay increases in movement for longer than birds released
4 months before migration departure. To that end we
expected systematic differences in movement distance
between wild-hatched and captive-hatched Egyptian vul-
tures in the days immediately after fledging/release but not
in the days prior to migration. We further expected that the
relaxed time constraints experienced by captive-hatched indi-
viduals allow for individual variation in movement ontogeny
to emerge: We expected this to manifest in (a) greater varia-
bility in the two captive groups as compared to the wild
group at the population level, and (b) greater individual
level variation in both shape of performance curves
(figure 1) as well as time until increase of movement dis-
tances. We tested for maturation, parental and social effects
on the shape of performance enhancement and latency to
reach the wild birds’ displacement distance.
2. Methods
(a) Data collection
Captive-hatched Egyptian vultures were raised in Hai-Bar
Carmel Nature Reserve breeding facilities in northern Israel
(32.75° N, 35.01° E) (see ref [34] for details regarding the cap-
tive-breeding and release methods). Hatched chicks were
released to the wild between 2013 and 2020, in spring (March
or April) or winter (December), during their second or third
year of life. Location data from both captive-bred and wild-
hatched vultures was collected by fitting the birds with either
Argos-GPS transmitter (manufactured by Microwave Telemetry),
or GPS-GSM transmitters (E-obs or Ornitela); all transmitters
were solar-powered. Transmitters were fitted to captive-hatched
vultures between two hours and two days prior to their release.
Wild-hatched vultures were aged according to plumage charac-
teristics and were tagged in the nest approximately 5–20 days
before their expected fledging (ca. 75 days post hatching). Trans-
mitters were fitted in either backpack or leg-loop harness
configurations [35] and weighed less than 2% of the vultures’
mass [36]. GPS data were collected during daylight time, starting
an hour before sunrise and ending an hour after sunset, a time
period that incorporates all of the Egyptian vultures’movements.
Sample rate varied from 1 Hz to 60 min, depending on tag
settings and battery voltage.

(b) Processing movement data
All GPS data were re-sampled to the coarsest sampling rate: a 60-
minute location interval. Because wild-hatched vultures were
tagged in their nests, where the solar panels are not exposed to
the sun and thus the battery cannot be charged, few GPS
locations were recorded during some post-fledging days. We
only included days with at least 10 locations in our analysis. Fur-
thermore, to avoid including data collected during pre-fledging
days we defined fledging as the first day in which a vulture
moved at least 200 m from its nest, as the spatial error of hatchl-
ings in the nest was around 100 m. For each day, the maximum
daily displacement from the roost was calculated as the furthest
distance recorded from the first location of that day. Because the
first GPS location was taken an hour before sunrise, we assumed
that it represents the vultures’ night roost, thus maximum daily
displacement represents the furthest daily exploration. We used
the geosphere package [37] in the R environment [38] for
distance calculations.

(c) Statistical analysis
We log-transformed displacement distances for all statistical ana-
lyses. Log transformation was important to comply with
statistical assumptions of normality but further underpinned
our biological assumption that increases in movement at shorter
distances are more likely to reflect performance increases than at
longer distances. For biological interpretation we report results
back-transformed to the km scale.

(i) Wild and captive performance curves and variability around
those curves

We fitted population-level performance curves separately for
wild birds and captive birds released in spring or winter. We
fitted four competing functional relationships between move-
ment distance (log transformed) and number of days since
fledging or release: a linear relationship, an exponential growth
model, an asymptotic growth model and a four-parameter Wei-
bull function which produces a sigmoidal curve (figure 1). We
additionally fitted a null model indicating no relationship
between movement distance over days since release. We used
the R packages drc [39] and aomisc [40] for self-starting nonlinear
curve fitting. Because of highly scattered data we opted for more
robust curve estimation on the median (as opposed to non-robust
least-squares estimation on the mean). Accordingly, the linear
model was estimated using quantile regression on the median
using the R package ‘quantreg’ [41]. We compared model fit
using Bayesian information criterion (BIC) where lower values
of BIC indicate better model fit. When BIC values of several
models were similar (within the range of two, indicating an
equally good fit), we selected the simplest model. We preferred
BIC over AIC because it penalizes additional model parameters
more strongly and we were interested in the simplest curve
describing the increase in displacement distance over day since
fledging/release. We bootstrapped each group’s selected model
1000 times to derive 95% confidence intervals for the predicted
increase in movement along time. We determined the median
distance covered by wild birds on their first day after fledging
and extracted the number of days (±95% CI) after which the
spring and wild birds’ predicted movement distances had
increased to 2 km, as indicator that vultures had started to
increase movement performance. To assess the variability of dis-
placement distances around the median we estimated the
median absolute deviation for a three-day moving window. We
tested for group-specific changes in variability along time since
fledging/release by fitting group-specific temporal smoothers
with 4 degrees of freedom using the ‘mgcv’ package. The results
were qualitatively similar to non-overlapping daily estimates of
the median absolute deviation but days with few datapoints
were less influential.

(ii) Maximum displacement after fledging and before migration
We first fitted two mixed effects models to compare movement
behaviour of wild and captive hatched birds, released either in
winter or spring, in the first 20 days after fledging or release
and the last 20 days before departure on migration. For wild
birds, these two periods overlapped in most birds because wild
birds only stayed on average 32 days in the area before migrating
(range: 9–64; figure 2a). We only included birds in the compari-
son for which we obtained movement behaviour on at least 9
days of the 20-day periods, which reduced the samples size for
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the period 20 days after fledging by six wild birds (retaining 14
out of 20 birds) and four winter released birds (retaining 13
out of 17 birds). For both periods we fitted a model controlling
for interactive effects of rearing type (wild, released in spring
or released in winter) and time (i.e. days since fledging/release
and days to migration) on log transformed maximum daily dis-
placement. We allowed for a nonlinear increase (or decrease) in
movement over time with a second order polynomial. Because
we expected a priori that movement behaviour increases in a non-
linear fashion and that groups may differ in their movement after
fledging and prior to migration, we fitted a full model and inter-
preted model coefficients rather than applying model selection.
We controlled for among-individual variation in movement
with random intercepts for individual identity and random
slopes over time, grouped by rearing type and we also allowed
the residual variance to vary between rearing types. Grouping
variance components by rearing type was important as we
expected group specific differences in among-individual and
residual variance. We used the R package brms [42] to fit
mixed-effects models and inspected posterior predictive plots
for model fit. We ran four chains for 10 000 iterations with a
warmup of 8000, resulting in 800 posterior draws.
222429
(iii) Individual performance curves
For each individual we fitted five competing functional relation-
ships between movement distance (log transformed) and number
of days since release and selected the simplest model within a
BIC range of two (see ‘wild and captive performance curves’
for details). Individual models were fitted on the mean
(least squares estimation) and not on the median because indi-
vidual data distributions where symmetrical and with fewer
outliers than the data distribution on the population level.
Using each individual’s top model, we calculated after how
many days each bird reached the average movement distance
of wild birds in their first 20 days after fledging. We tested
whether wild, spring and winter released birds showed equal
variance in reaching the benchmark using a Levene’s test. We
used a Kruskal Wallis ANOVA to test whether the median
time to reach the benchmark flying distance differed between
wild, spring and winter released birds. For captive reared birds
we also tested whether age at release (maturation), release
cohort (social environment), or parental breeding pair (genetic
relatedness and other potential effects related to the specific
pair such as parent age and behaviour) would explain simi-
larities among birds in the type of performance curve, and the
likelihood and time to reach a benchmark flying distance (see
electronic supplementary material, analysis S1 for details).
3. Results
We obtained data from 20 wild-hatched and 25 captive-
hatched Egyptian vultures (figure 2a). Wild birds hatched
in May and fledged at an age of approximately 75 days. Cap-
tive hatched birds were raised and released as part of a
conservation-translocation project [34]. These birds were the
descendants of five captive breeding pairs and were released
in eight cohorts between 2013 and 2020 either in spring
(March–April, n = 8 birds) or winter (December, n = 17
birds) before their first migration in August–October
(figure 2a). The age at release ranged from 155–701 days.
The time between fledging/release and the onset of
migration was on average 32 days (range: 9–64 days) for
wild birds, 153 days (104–189 days) for birds released
in spring and 261 days (230–287 days) for birds released
in winter.
(a) Performance curves and variability under strict
and relaxed time constraints

We found variation in performance curves among wild
hatched, spring released and winter released vultures.
Increases in log transformed maximum daily displacement
distance in wild vultures were best approximated by an
asymptotic growth curve (electronic supplementary material,
table S1). Wild vultures’ median movement increased rapidly
from around 2 km on the first day after fledging, reaching a
plateau after about 6 days (s.e. = 1.6 days) (figure 2b,c). By
contrast, spring and particularly winter released vultures
delayed increases in movement and performance followed
an exponential and sigmoidal curve, respectively (figure 2b,c).
Spring released birds were predicted to increase movement
at an initially slow rate, reaching a median maximum daily
displacement of 2 km (the distance wild birds covered on
their first day after fledging) only after 58 days (lower and
upper confidence limit = 43, 70 days; approximately begin-
ning of June, given a release in the beginning of April;
figure 2a). Winter released vultures were predicted to stay
sedentary for even longer and only moved over 2 km after
122 days [112, 130 days; approximately mid-April, given a
release in the beginning of December] (figure 2b,c). Across
wild birds we found a median absolute deviation in maxi-
mum daily displacement over a 3-day moving window of
1.3 km with no significant increase or decrease over time
between fledging and the start of migration (lower and
upper credible interval reflecting red lines in d = 1.17 km,
1.5 km). In comparison, individual variability in daily displa-
cement (measured as median absolute deviation) of spring
and winter released vultures immediately after their release
was 0.8 km (credible interval = 0.7 km, 1 km) and 0.6
(0.4, 0.7) km, respectively, which was significantly lower than
the individual variability of wild birds, as inferred by a lack
of overlap of the groups’ credible intervals with the wild
bird’s median absolute deviation credible interval (red lines
in figure 2d). However, variability of spring and winter
released birds increased with time since release and peaked
at 1.9 (1.7, 2) km and 2.1 (2, 2.2) km, 130 and 180 days
after release, respectively, which was significantly higher
than variability in wild vultures (no overlap of credible inter-
vals with red lines in figure 2d). The higher median absolute
deviation of spring and winter released vultures compared
to wild birds suggests greater individual variability in
movement distances.

(b) Maximum daily displacement after fledging
and before migration

Maximum daily displacement distance during the first 20
days after fledging was higher for wild birds than for
winter or spring released vultures (electronic supplementary
material, table S2). Our model results show that wild hatched
vultures increased maximum displacement from an esti-
mated 3.7 km to an estimated 8.2 km over the 20-day
period (electronic supplementary material, figure S1A) and
therefore moved on average 8.1 km [credible interval: 7.7
km, 8.5 km] per day (figure 3). Vultures raised in captivity
did not increase movement between day 1 and day 20 after
their release (electronic supplementary material, figure S1A)
and moved over much shorter daily distances (spring
released: 1.1 km [1.02 km, 1.09 km], winter released 0.85
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Figure 3. A linear mixed-effects model showed that wild birds moved over significantly farther distances in the first 20 days after fledging (mean = 8.1 km) in
comparison to spring (mean = 1.0 km) or winter released captive birds (mean = 0.8 km). This discrepancy disappeared when comparing the three groups in the last
20 days before migration departure as wild hatched and both spring and winter released birds moved over similar distances per day. Models were fitted on log
transformed maximum daily displacement distances and hence y axes are on the log scale, while labels are shown in kilometre units to aid interpretation. Dots are
showing the raw maximum daily displacement data and violins are showing modelled posterior distributions with means indicated by asterisks.
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km [0.8 km, 0.89 km]; figure 3). These differences between
wild and released vultures disappeared when comparing
movement in the 20 days before migration (electronic sup-
plementary material, table S2): vultures of all three groups
moved over similar average daily distances (wild= 8.7 km
[4.5 km, 11.8 km]; spring released = 8.1 km [5.95 km, 9.28
km], winter released = 11.5 km [9.4 km, 17.6 km], figure 3;
electronic supplementary material, figure S1A).

(c) Individual variation in performance curves under
relaxed time constraints

We found large individual variation in the timing and speed
of movement increases (figure 4). Of 25 captive reared indi-
viduals, 12 displayed a performance increase best described
by a sigmoidal Weibull function, where the bird first
moved very little for a prolonged period of time, followed
by an increase of daily movements up to a plateau where
daily movement distances did not increase further. Four
birds showed a consistent linear increase in movement dis-
tance, five an exponential increase immediately before
migration, two an asymptotic increase with rapid increases
in flight distance shortly after release and two birds showed
no consistent increase in distance at all (electronic sup-
plementary material, table S3). Of 14 wild birds, 5 showed
a linear increase in movement and 6 showed a sigmoidal
increase with an initial delay. Three birds showed no
performance increase, however, their flight distance immedi-
ately was around or above 8 km. The age of the bird, cohort
or breeding pair identity did not determine the type of per-
formance curve in captive birds (electronic supplementary
material, table S4, figure S3).

Individual performance curves revealed great variability in
the time to reach a displacement distance of an average wild
bird during their first 20 days after fledging (8.1 km, red
dashed line in figure 4). While only one out of 14 wild birds
did not reach the benchmark distance of 8.1 km, 7 of the 25
captive-raised birds never reached this distance. Wild birds
took a median of 6 days after fledging to reach the benchmark
(range 0–44 days after fledging, variance = 192, blue dashed
lines in figure 3). By contrast spring released birds reached
the 8.1 km after a median of 45 days (within a 121-day
range, variance = 2593) and winter released birds reached the
benchmark after a median of 144 days (within a 228-day
range, variance = 6590). Both the variance (F = 9.97, p < 0.001)
and median (χ2 = 20.1, p < 0.01) in the number of days to
reach the benchmark differed significantly among wild,
spring and winter released birds. Age at release, cohort or
breeding pair identity neither affected the likelihood for cap-
tive birds to reach a daily displacement of 8.1 km prior to
migration nor the number of days it took birds to reach it (elec-
tronic supplementary material, table S4). For example, out of
seven birds released together, one bird never reached a daily
distance of 8.1 km while the other birds reached that daily
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Figure 4. To study individual ontogeny of movement, measured as maximum daily displacement (km) in Egyptian vultures from fledging/release to the start of the first
migration, we fitted for each individual five alternative performance curves of different functional forms: null, linear, asymptotic, exponential, sigmoidal. Using BIC to
select the most parsimonious performance curve revealed different patterns for time constrained wild-hatched birds and captive-reared vultures released under relaxed
time constraints. Performance in spring and winter released vultures followed a sigmoidal Weibull curve in 12 cases, for 4 birds the linear model reflected increase in
movement distance best, for 5 birds the exponential and for 2 birds the asymptotic model performed best. Two birds showed no increase in movement distance. For wild
hatched vultures, performance increased linearly in 5 cases, sigmoidally in 6 cases, and 3 birds showed no increase, yet moved around 8 km from the first day on. The
red dotted line indicates the modelled average movement distance for wild birds in the first 20 days after fledging (8.1 km). The value on the x-axis where the red
dashed line and an individual’s performance curve cross indicates how many days it took for that individual to show a similar flight proficiency as an average wild
hatched bird after fledging. Panels are labelled by release cohort s (release year-release month-letter identification) or the year a bird hatched and tagged. Models were
fitted on log transformed maximum daily displacement distances and hence y-axes are on the log scale, while labels are shown in kilometre units to aid interpretation.
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distance after 48, 144, 172, 188, 241 and 264 days respectively
(cohort 2020-12 in figure 4).
oyalsocietypublishing.org/journal/rspb
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4. Discussion
Taken together, our results suggest that migration phenology
paces the ontogeny of movement behaviour and further, that
relaxing time constraints imposed by migration departure
date allows for variation in individual development to
emerge. Movement performance of wild Egyptian vultures
fledging 1 month before migration enhanced immediately
after fledging. By contrast, vultures released in spring 4
months prior to migration remained almost stationary for
the first two months and vultures released in winter 9
months prior to migration for almost four months after their
release. However, individual ontogeny of movement varied
greatly among released birds with a handful of vultures start-
ing to move right away, similar to their wild counterparts, and
others showing delayed performance enhancements to various
degrees. A few individuals never increased movement until
their departure for migration. While wild-hatched vultures
also showed rudiments of different strategies, their strict
time schedule restricted the opportunity for individual varia-
bility in ontogeny. This study is the first to demonstrate a
possible effect of time constraints on the schedules of juvenile
behavioural ontogeny in the wild.

Relaxed environmental constraints can lead to increased
phenotypic variability [43], in the short-term through
increased phenotypic plasticity [44,45] and in the long-term
through relaxed natural selection and evolution [46]. While
the effect of constraints on behavioural variability has been
mainly studied in the context of predation (with relaxed preda-
tion pressure leading to increased behavioural variability in
prey species) [9,11], relaxation of other environmental con-
straints can equally promote behavioural variability.
Moreover, past studies almost exclusively focused on behav-
ioural variability among adult individuals but to our
knowledge this is the first study testing the effect of environ-
mental constraints on individual variation in behavioural
ontogeny. We here illustrate that under strict time constraints
created by the onset of migration, individuals showed little
variability in behavioural ontogeny, with the majority of
birds moving over long distances within 20 days after fledging.
By contrast, increasingly relaxed time constraints created eco-
logical opportunity and led to pronounced variability in
ontogeny. Time constraints were however confounded with
weather conditions, where winter released vultures met
worse flying conditions in early ontogeny than spring released
and particularly wild hatched vultures. Yet, at least on the
individual level, weather did not seem to be the main ecologi-
cal constraint as several winter released vultures started flying
before the arrival of warmer weather in spring. Our results
suggest that flexibility in ontogeny is maintained and can be
expressed when an ecological opportunity occurs.

Importantly, we show here that birds with relaxed time
constraints pursued very different functional forms of
performance enhancements, whereas in experimental con-
ditioning paradigms individuals usually respond with a
similar performance curve to a given learning problem and
only differ in their timing to start improving or reaching a
performance plateau [15]. It therefore remains the question
which proximate factors could mediate the observed
variability in group-level and individual ontogeny. In fact,
the shape of the performance curve harbours important infor-
mation about how physiology and motivation limit the
ontogeny of behaviour. In the case of animal movement,
these potential limitations mirror the mechanistic com-
ponents driving animal movement described under the
movement ecology paradigm [47], where differences in
movement ontogeny could be explained by (a) differences
in motion capacity (e.g. different ages or molt stages), (b)
differences in the internal state (e.g. internal clock, hunger
level) of an animal which determines its motivation to
improve movement, and (c) differences in external factors
(e.g. weather conditions) which can affect both the capacity
and the motivation of an animal to improve movement
[47]. Rapid initial increases, as we found for the majority of
our wild-hatched and some of our captive-hatched birds indi-
cate that physiology is not limiting and that motivation is
high. By contrast, slow rates of initial improvement, as we
found for most of our captive-hatched birds and particular
ones released on the most relaxed time regime 9 months
before their first migration, suggest that either physiology
or external conditions (i.e. weather) are limiting or that
there is a lack of initial motivation. All captive-hatched
birds were reared under similar conditions in cages and the
age of the bird did not explain individual differences in
movement patterns. We therefore deem it unlikely that differ-
ences in motion capacity between wild and captive-hatched
birds caused variability in movement ontogeny. Rather, cap-
tive-hatched vultures might be less motivated to start
enhancing movement immediately, because they are released
in the vicinity of supplemental feeding sites, because they are
lacking the company of experienced adults, precluding the
option for social learning of soaring flight behaviour [5], or
because their internal clock, only triggers the motivation to
start moving when migration approaches [19]. External
weather conditions probably have additive effects on the
motivation and capacity to move. For soaring-gliding flight,
birds harness thermals, which are more common in the hot
and rainless summer [29]. Because of the progressively
delayed increase in movement ontogeny along progressively
relaxed time constraints to migration from 1 to 4 to 9 months,
we believe that an internal clock in combination with weather
conditions explains the group-level variation in movement
enhancement best. Additionally, because birds released 9
months prior to migration delayed movement for longer
than spring-released birds we deem it unlikely that the
observed pattern was solely driven by differences in rearing
conditions (see also electronic supplementary material, analy-
sis S2). Interestingly, birds within the three groups were
exposed to the same conditions, yet displayed different
degrees of individual variation in movement ontogeny: lim-
ited variation in wild hatched birds and greater individual
variation in spring and winter released birds. We propose
that constraints motivate individuals to conform toward an
optimal phenotype with limited variability around it while
the lack of constraints provides the ecological opportunity
for hidden individual variation in ontogeny to be expressed.
It is remarkable that despite the striking individual variation
in the timing to increase movement, all captive-hatched
individuals started their migrations at approximately the
same time, and after reaching similar maximum displace-
ment distances, supporting the idea of an internal clock
triggering movement shortly before migration. To validate
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our interpretation, that the internal clock of birds effectively
paces the ontogeny of movement and to rule out rearing or
weather conditions as alternative drivers, we would need to
move the release of captive-hatched birds to the same time
window as the fledging of the wild hatched birds. We
would expect similarly synchronized performance increases
of summer released vultures, as found in wild birds because
the experienced time constraints would be similar. Impor-
tantly, data from the same birds ahead of their second
migration corroborate that the observed first year patterns
can indeed be interpreted as learning of flight behaviour. In
their second summer, vultures move consistently over longer
daily distances (30–35 km), with no increase in distance over
the summer, no differences between wild hatched or captive-
raised vultures, and little individual variation (electronic sup-
plementary material, analysis S3). Because processes of
learning, motivation and physiology can be directly inter-
preted from performance curves, studying the ontogeny of
animal behaviour in the wild with performance curves
opens new avenues to test biological hypotheses related to
alternative developmental strategies. Future studies should
harness experimental datasets with full controls or natural
experiments, such as species that exhibit partial migration in
their first year of life [22], to disentangle effects of internal
clocks and environmental conditions driving the ontogeny of
movement behaviour.

Our study system was based on a captive breeding pro-
gramme and highlighted systematic differences in the
ontogeny of flight behaviour between wild and captive hatched
Egyptian vultures. For animals bred in captivity and released
into the wild, the establishment of ‘natural’ movement behav-
iour, which resembles the behaviour of wild conspecifics, is
pivotal for finding resources and escaping hazards [48,49] and
hence ultimately for their survival and the success of the captive
breeding programme [50]. However, such establishment of natu-
ral movement behaviour is often difficult to achieve for
reintroduced individuals or populations, for example because
movement can be socially learned and culturally transmitted
over generations [5,51,52]. Direct comparisons of movement per-
formance between wild hatched and captively raised
individuals in the same environment are lacking from the litera-
ture, despite such comparisons being vital for evaluating the
success of captive breeding programmes and the opportunity
to use such comparative data to study ecological questions
[53], as seen in our study. In the case of our Egyptian vulture
system, we show that captive hatched birds can establish move-
ment in a similar fashion to wild birds, as seen in some
individuals, but that most birds released well in advance of
their first migration in fact delay movement, probably in
response to an internal clock, the zeitgeber of migration in com-
bination with weather conditions favouring long flight distances
in the summer.
5. Conclusion
We here propose that developmental schedules in some
species could be more flexible than we currently see
expressed, which could increase population resilience to a
changing climate and extreme weather events. In fact, behav-
ioural flexibility and individual plasticity have been
suggested as key mechanisms for successfully coping with
and persisting under climate change [54–56]. Climate
change is already altering the timing of animal migrations
[57,58], for example through individual plasticity [59], result-
ing in shifts of time constraints on adult breeding phenology
[60] but also on juvenile ontogeny, as we suggest here.
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