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A B S T R A C T

The rapid pace of human-related development and environmental instability has placed significant pressure on 
global ecosystems, threatening the existence of numerous threatened wildlife species, including birds. Accurate 
and detailed monitoring can play a crucial role in safeguarding biodiversity, supporting conservation efforts and 
enhancing ecosystem management. Traditional monitoring methods, such as direct observation and manual 
image analysis, are labor-intensive, prone to bias, and often inadequate for large and densely populated breeding 
colonies. In this study, we developed a fully automated deep-learning-based algorithm to identify, count, and 
map breeding seabirds in a large and densely populated mixed breeding colony containing breeding pairs of two 
visually similar species, the regionally-threatened Common Tern (Sterna hirundo) and the Little Tern (Sternula 
albifrons). Using YOLOv8 for initial object detection using remote-controlled cameras, we enhanced classification 
performance by integrating ecological and behavioral features, including spatial fidelity, movement patterns and 
size, through camera calibration techniques. Our algorithm successfully identified, counted, and mapped 
breeding individuals from both species with an average discrepancy of only 2 % compared to manual counts, and 
achieved over 90 % accuracy in correctly identifying the species of nesting individuals from both species. By 
providing high-resolution spatial mapping of nesting individuals, the system also offers valuable insights into 
habitat use and intra-colony dynamics. Additionally, incorporating behavioral tracking via video analysis allows 
for a more accurate differentiation between nesting and non-nesting individuals. Our methodology represents a 
significant advancement in automated wildlife monitoring by integrating artificial intelligence for automatic 
counting, mapping and classifying birds to enhance our understanding of ecological processes and to aid con
servation. This study presents a robust, automated framework for seabird colony monitoring that minimizes 
human disturbance while maximizing accuracy and efficiency. By leveraging deep learning and ecological 
knowledge, this approach can revolutionize conservation monitoring, offering a scalable and cost-effective so
lution for tracking wildlife populations in an era of rapid environmental changes.

1. Introduction

The rapid pace of human-related development has placed significant 
pressure on ecosystems across the world, threatening numerous species 
(IUCN, 2022; Phillips et al., 2023). Addressing this challenge has 
become main focus of conservation efforts worldwide, with many 

countries implementing measures to protect animal populations and 
ensure their long-term survival. Seabirds are one of the most threatened 
groups of birds, with almost half of seabird species experiencing popu
lation declines (Croxall et al., 2012; Phillips et al., 2023). Understanding 
seabird population trends is vital for preserving both these species and 
the marine ecosystems they inhabit (Croxall et al., 2012). These 
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seabirds, many of them extreme long-distance migrants, face an array of 
threats, including coastal and marine contamination, depletion of fish 
stocks, and climate changes, which adversely affect their nesting sites, 
foraging areas, reproductive outcomes, and survival rates (Brierley and 
Kingsford, 2009; Fay et al., 2015; Oro et al., 2004).

Effective monitoring strategies play a pivotal role in species con
servation. When successfully implemented, they enable the detection of 
population changes and provide timely opportunities to address threats 
before a species faces extinction. Ideally, monitoring serves as a tool for 
evaluating the outcomes of various conservation measures within an 
adaptive management framework (Walsh et al., 1995) and supports the 
implementation of policy reforms. In the absence of robust monitoring 
data, it becomes challenging to prioritize research efforts, assess the 
success of management interventions, and provide decision-making 
guidelines (Scheele et al., 2018; Verdon et al., 2024). However, cur
rent monitoring practices predominantly rely on traditional methods 
such as on-site observations using binoculars or telescopes and manual 
camera monitoring (Pugesek and Stehn, 2016; Verdon et al., 2024). 
These approaches are time-intensive, laborious, and prone to limita
tions, including restricted spatial coverage. Moreover, the accuracy and 
completeness of the collected data can be compromised by observer 
bias, variations in expertise, and temporal inconsistencies of the moni
toring (Legg and Nagy, 2006). Furthermore, approaching and under
taking the monitoring actions at close proximity to nesting colonies may 
disturb the birds and challenge their standardized monitoring, further 
complicating conservation efforts (Blackmer et al., 2004). The in
efficiencies and inconsistencies of these widely used methods under
score the need for consistent, automated and more effective techniques 
to substantially improve wild animal monitoring, thereby enhancing 
conservation initiatives.

In recent years, advancements and developments in technological 
tools have transformed the way animals and biodiversity can be moni
tored and studied (August et al., 2015; Bridge et al., 2011; Delisle et al., 
2021; Ghosh et al., 2023a; Ghosh et al., 2023b; Ghosh et al., 2024; Jiang 
and Wu, 2024; Pan et al., 2025). Various tools enable collection of large 
datasets with minimal time and resource investment or to process the 
data collected more efficiently. Methods such as aerial photography, 
unmanned aerial vehicle (UAV) surveys (Chabot et al., 2015; Noguchi 
et al., 2025; Weissensteiner et al., 2015), and the use of fixed position 
cameras for images and videos (Bolton et al., 2007; Kline et al., 2025; 
Schindler and Steinhage, 2021; Simões et al., 2023; Williams and DeL
eon, 2020), all non-invasive methods, can improve the efficiency and 
accuracy of bird monitoring. These methods also help reduce the 
disturbance to the natural behavior of the birds in their breeding col
onies, which are often particularly sensitive to human presence and 
other anthropogenic disturbances (Edney and Wood, 2021; Richter 
et al., 2018). However, animal monitoring through images and videos is 
however inefficient as it still heavily relies on manual image analysis, 
requiring the meticulous review of photographs and the counting of 
each species present. Some approaches employ semi-automated classi
fication, which involves identifying a unique spectral signature for the 
target object to detect its occurrences within the image (Hodgson et al., 
2018; Schwaller et al., 1989). However, this method proves challenging 
for high-density breeding sites or species that lack strong visual contrast 
with their environment, such as cormorants on dark rocks. Fully auto
mated machine-learning algorithms have also been developed to iden
tify birds in images (Jiang et al., 2025; Jones et al., 2020; Williams and 
DeLeon, 2020), but these usually require vast datasets of pre-annotated 
images (Jones et al., 2020). Moreover, many of these systems rely on 
single-frame analyses, which can lead to inaccuracies in breeding 
counts, as non-breeding birds may be miscounted, or breeding in
dividuals may be overlooked if absent from the frame at the time of 
capture. Animal behavior research has also benefited from recent ad
vances in deep learning (Saad Saoud et al., 2024), particularly through 
the development of models capable of estimating animal pose for 
behavioral analysis (Mathis et al., 2018; Zhang et al., 2023). These 

models enable the extraction of behavioral metrics such as movement 
rates and posture patterns, which can serve as indicators of an animal’s 
overall well-being (Yang et al., 2024). However, many of these methods 
have been developed for domestic animals (An et al., 2023; Bhuiyan and 
Wree, 2023; Fang et al., 2021) or under controlled laboratory conditions 
(Forys et al., 2020; Segalin et al., 2021; Xiao et al., 2023). In the context 
of wildlife behavior monitoring, several studies have focused on 
detecting and classifying animals using drones (Cusick et al., 2024; 
Noguchi et al., 2025; Rančić et al., 2023; Schad and Fischer, 2023), 
which enable large-scale population surveys but do not support 
continuous behavioral monitoring. Camera traps, on the other hand, 
which are also widely used and increasingly analyzed using deep 
learning methods (Fennell et al., 2022; Johanns et al., 2022; Leorna 
et al., 2022; Song et al., 2024), do allow for continuous monitoring but 
are typically limited to a small number of individuals within restricted 
areas. Consequently, there is an urgent need for fully automated 
methods that can improve both the precision and efficiency of bird 
monitoring, enabling the study of fundamental behavioral traits through 
continuous, large-scale monitoring, such as at breeding colonies, for 
conservation purposes.

The terns studied in this project include the vulnerable Common 
Tern (Sterna hirundo) and the endangered Little Tern (Sternula albifrons) 
in Israel (Mayrose et al., 2017). Over recent decades, tern populations in 
Israel experienced significant changes, most notably the loss of suitable 
breeding habitats. This has led to the concentration of most of the 
breeding population into a single, large and dense colony that now 
consists approximately 90 % of the local breeding population for these 
species. Such aggregation heightens the population’s vulnerability to 
catastrophic events, including predation and disease outbreaks, while 
potentially intensifying both interspecific and intraspecific competition 
(Boulinier and Lemel, 1996; Lewison et al., 2012). The breeding colony 
is located on an island within a large salt production facility that in
cludes large pools, adjacent to the town of Atlit on the Mediterranean 
Sea coast of Northern Israel. The goals of this study are to develop an 
automated algorithm capable of (1) distinguishing between two visually 
similar species, (2) identifying and differentiating the behaviors of 
breeding individuals, (3) counting only breeding individuals, and (4) 
mapping the precise locations of breeders from both species. By 
employing a deep learning approach (YOLOv8), we monitored the 
breeding site by scanning it four times daily using two remotely 
controlled cameras, providing detailed reports on the number of 
breeding birds of each species and their spatial distribution. While 
cameras have been employed for seabird colony monitoring for several 
decades, to our knowledge, this study represents a novel application of 
fully automated methods for monitoring seabird colonies.

2. Materials and methods

2.1. Manual breeding populations counts

Manual annual counts of breeding Common and Little Terns from 
2011 to 2024 were compiled from reports generated by the Atlit tern 
conservation project (Hatzofe and Mayrose, 2009; Kiat and Schekler, 
2021; Ribak et al., 2017; Schekler et al., 2015; Schekler et al., 2016). 
These counts adhered to the methodologies described in the respective 
reports, which included observations conducted from a vehicle, a tower 
adjacent to the colony, or one or two remotely controlled cameras. The 
counts were carried out by professional observers, who changed over the 
years. Breeding counts were conducted approximately once a week 
throughout the breeding season, from April to August. The highest count 
recorded during the season was used as the final estimate of the size of 
the breeding population in each year. We performed an ANOVA analysis 
to evaluate whether the counting methods influenced the breeding 
population size estimates for each species using R software (version 
4.0.3, R Core Team).
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2.2. Data collection, processing and tagging

Data collection from the tern colony was carried out in 2023 and 
2024 using two off-the-shelf remotely controlled cameras positioned on 
the island. The camera locations were selected to ensure full coverage 
and clear visibility of the colony, with particular emphasis on moni
toring the Little Tern breeding area near the southern camera (Fig. 1S). 
This setup allowed for detailed observation and recording of the col
ony’s dynamics, extent and additional properties (see below). The 
cameras (DH-SD5A232XA-HNR 2MP × 32 Starlight IR WizSense 
Network PTZ) were equipped with features such as remote horizontal 
and vertical movement, variable speed control, × 32 zoom, and online 
accessibility. The system allowed for setting up to 300 preset positions 
with specific zoom, yaw and pitch settings, enabling automated scan
ning sessions at predefined intervals and times between the present 
positions location, defined as “flags”. Additionally, the cameras enabled 
the identification of individual birds through coded leg rings, nest 
counts, observations of adults, chicks, deceased individuals, identifica
tion of threats such as predators (e.g., Red Fox Vulpes vulpes or Hooded 
Crow Corvus cornix) and rising water levels that may harm nests found 
near the edges of the island. Automated scans were conducted four times 
daily at 10:00, 10:17, 15:00, and 15:17. Each camera focused on its 
designated area, with combined coverage of the entire island. The 
northern camera scanned 63 preset flags, while the southern camera 
covered 47 (Fig. 1S), pausing for 15 s at each flag. Scan durations were 
15.75 min for the northern camera and 11.75 min for the southern. At 
the beginning and end of each scan, the cameras captured wide-angle 
views to assess potential threats. The cameras used in this study have 

not been observed to cause any disturbance to the birds. All scans are 
conducted silently during daylight hours, thereby eliminating potential 
disturbance from both infrared illumination (which is inactive during 
the day) and acoustic noise. All data were recorded and stored for 
analysis.

To train and refine a model for distinguishing between Common and 
Little Terns, tagged images from the colony were utilized. Tagging was 
performed using the RectLabel annotation tool (https://rectlabel.com/), 
creating a dataset of 1659 images derived from both cameras’ flags. 
These images were split into training (70 %), validation (20 %), and 
testing (10 %) datasets. Seven categories were defined for tagging: 
Common Tern standing (1533 examples), sitting (3218), flying (61); 
Little Tern standing (82), sitting (466); chicks (538); and “other” (16 
examples, including non-target species in the colony).

2.3. YOLOv8 network architecture

YOLOv8 (You Only Look Once version 8) is one of the latest gener
ations of the YOLO series, designed for tasks such as object detection, 
image classification, and instance segmentation. Released by Ultralytics 
in January 2023, YOLOv8 builds on the architecture of YOLOv5 with 
substantial improvements in performance and usability (Varghese and 
Sambath, 2024). Known for its impressive accuracy and compact model 
size, YOLO models are accessible and efficient, as they can be trained on 
a single GPU, making them suitable for a broad spectrum of developers. 
Additionally, YOLOv8 can be fine-tuned for custom datasets, enabling 
enhanced performance tailored to specific applications and datasets, like 
in the case of our study where we fine-tuned it for tagged terns images. 
YOLOv8 introduces enhanced architectural features and optimizations, 
and evaluations on the COCO dataset demonstrate that YOLOv8 out
performs its predecessors (Varghese and Sambath, 2024).

The architecture of YOLOv8 is structured around four key compo
nents: the input, backbone, neck, and head, each optimized for effi
ciency and accuracy. The backbone has been enhanced with 
modifications such as replacing the 6 × 6 convolutional layer with a 3 ×
3 layer and substituting the C3 module with the more efficient C2f 
module, improving feature extraction. The neck, responsible for aggre
gating and refining features across scales, eliminates the 1 × 1 con
volutional sampling layer and also integrates the C2f module. In the 
head, a decoupled architecture separates classification and regression 
tasks, enabling more precise predictions. This design outputs bounding 
boxes for object localization, class predictions to identify object types, 
and objectness scores to estimate detection confidence. However, it is 
important to note that YOLOv8 does not inherently identify the size of 
the detected objects, nor does it utilize size information for classification 
purposes. This limitation means that while YOLOv8 excels in detecting 
and classifying objects based on learned features, it does not provide 
explicit measurements of object dimensions. This can be a critical 
consideration for applications requiring size-specific analyses, such as in 
our case, where one of the primary differences between the two similar 
tern species is their size. To improve model generalization and robust
ness, data augmentation was applied automatically during training 
using the YOLOv8 framework’s default augmentation pipeline. The 
augmentation techniques included random horizontal flipping (50 % 
probability), random adjustments to image hue, saturation, and 
brightness (HSV augmentation), scaling (random zoom in/out), trans
lation (random shifting in the x and y directions), minor rotation, and 
shear transformations. In addition, YOLOv8 applies advanced augmen
tation strategies such as Mosaic augmentation, which combines four 
images into one to enrich context diversity, and MixUp, which blends 
pairs of images and their labels with a weighted ratio. Several trials were 
conducted using different manual adjustments to the augmentation 
parameters, including varying the strength and probability of each 
transformation. However, these modifications did not result in improved 
model performance. Consequently, the default automatic augmentation 
provided by YOLOv8 was adopted for the final model training. The 

Fig. 1. The Common Tern (Sterna hirundo; a) and the Little Tern (Sternula 
albifrons; b). Their distinct physical characteristics includes the colour of the 
beak (red in the Common Tern, yellow in the Little Tern), the shape and colour 
of the forehead (entirely black in the Common Tern, black and white in the 
Little Tern), and relative size (the Common Tern is approximately twice as 
large). Common Tern image by Alexis Lours; Little Tern image by Julio Jesús 
Añel Perez (Cornell Lab of Ornithology, Macaulay Library). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)
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augmentation was disable in the final training cycles, enhancing the 
model’s focus and improving accuracy in detecting real-world scenarios. 
YOLOv8 provides five model variants of increasing width and depth 
(YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x). Trials were 
conducted using several of these models (YOLOv8s, YOLOv8m, 
YOLOv8l, and YOLOv8x). Given that the targets in this study were of 
moderate size, with no need to detect tiny objects, the lightweight 
YOLOv8s was found to sufficiently meet accuracy requirements while 
offering superior computational efficiency. Larger models did not yield 
noticeable improvements in detection performance and came at the cost 

of significantly higher computational demands.

2.4. Algorithm key components

To accurately detect and count breeding pairs of two closely related 
seabird species in a dense colony, we developed an algorithm by 
enhancing YOLOv8. Our approach addresses the challenge of dis
tinguishing between visually similar species (Fig. 1) that nest in prox
imity, as well as differentiating breeding birds from non-breeding 
individuals for precise monitoring. This differentiation is achieved by 

Fig. 2. Schematic representation of the algorithm for seabird breeder identification, counting and mapping. (a) Training phase for the identification of key cate
gories, including Common Tern (standing, sitting, and flying), Little Tern (standing and sitting), chicks, and background classes. (b) Post training phase for iden
tifying breeding individuals of Common Tern and Little Tern, followed by automated counting and spatial mapping of their locations.
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tracking the exact locations of breeders throughout the day and 
leveraging behavioral traits characteristic of breeding seabirds like 
terns, which typically remain on their nests for long periods of time 
during the incubation period (Skutch, 1957). Furthermore, the algo
rithm generates georeferenced outputs, mapping the location of 
breeding pairs daily, thereby enabling spatial visualization of colony 
dynamics alongside accurate identification and counting of breeding 
terns. Our algorithm includes the following workflow and key compo
nents (Fig. 2):

2.4.1. Converting the video scans to images
In the first step, we converted the scan videos into images corre

sponding to the specific flags along the video timeline. Each flag was 
recorded for 15 s, during which images were captured at one-second 
intervals. We excluded the initial and final frames of the 15-s 
sequence, as they involved camera movement and focusing, and used 
11 frames per flag for analysis.

2.4.2. Training YOLOv8 for species detection
The model was trained on tagged images to differentiate between 

Common Terns and Little Terns based on their distinct morphological 
characteristics. These include the colour of the beak which is red in the 
case of the Common Tern and yellow in the case of the Little Tern, and 
the shape and colour of the forehead which is all black for the Common 
Tern, and a combination of white and black for the Little Tern (Fig. 1). 
Another important distinction between the two species is their size, with 
the Common Tern being approximately twice the size of the Little Tern. 
While this size difference is fundamental for identification in the field, it 
cannot be utilized by YOLO for classification. The model was also 
trained on various behaviors, such as sitting, standing, and flying, to 
enable the identification of breeders, which spend most of the incuba
tion period sitting. Additionally, it was trained to recognize chicks and 
other bird species occasionally present on the island, such as the Black- 
winged Stilt (Himantopus himantopus) and Spur-winged Lapwing 
(Vanellus spinosus). This comprehensive training forms the foundation 
for accurately distinguishing and localizing individual terns within the 
breeding colony.

2.4.3. Tracking objects
To classify objects accurately, we implemented a tracker to follow 

detected objects within each flagged area of the colony. Object tracking 
was achieved using the Intersection over Union (IoU) metric to correlate 
bounding boxes of detected objects between consecutive frames. IoU, a 
standard metric in object tracking, measures the degree of overlap be
tween two bounding boxes. For our application, IoU scores represented 
the spatial consistency of an object’s position across frames. A bounding 
box was associated with a track when its IoU score exceeded a threshold 
of 0.4. This threshold was determined empirically by testing a range of 
values to balance two opposing considerations: setting the threshold too 
low increased the risk of mistakenly linking two nearby individuals into 
a single track, while setting it too high increased the risk of generating 
multiple tracks for the same individual due to small frame-to-frame 
movements. Tracks were discarded if they could not be maintained for 
at least four frames. Valid tracks were integrated into the classification 
process. For each track, the mean IoU score of bounding boxes was 
calculated to define a movement rate. Additionally, a detection rate was 
derived as the proportion of frames in which the object appeared within 
its track.

2.4.4. Calculating box size in cm
To enhance species differentiation accuracy, we incorporated the 

physical size of the bounding box (in cm) into the classifier. Since 
Common Terns are approximately twice the size of Little Terns 
(Billerman et al., 2025), size can serve as a very important feature for 
classification. To determine real-world dimensions, the cameras were 
calibrated using a drone image of the colony anchored to geographic 

coordinates. By utilizing the drone image along with recorded zoom 
levels, pitch, and yaw for each flag, we calculated the precise location of 
each image pixel on the island. This calibration allowed us to convert 
pixel dimensions into centimeters, enabling the actual size of each 
bounding box to be calculated. This allowed incorporating it as a feature 
in the classifier.

2.4.5. Location probability
Seabirds, including terns, exhibit strong fidelity to their nesting lo

cations over time (Blums et al., 2002; Doherty et al., 2002; Patrick and 
Weimerskirch, 2017). In this colony, Little Terns have consistently 
nested in specific areas for over 15 years, with only one recorded shift 
(Ribak et al., 2017). Location probabilities for each species were derived 
from tagged images and, where tagging was unavailable, YOLOv8 model 
predictions. These probabilities, specific to each flag, were added as a 
feature to improve classification.

2.5. Classifier model

The training dataset consisted of 111 tagged images, comprising 
1793 annotated bounding boxes across eight categories: Common Tern 
sit (1431), Common Tern stand (221), Little Tern sit (84), Little Tern 
stand (3), chicks (12), background (38), and other (2). A background 
category was specifically introduced to address the YOLOv8 model’s 
initial misclassification of stones. Each tracked bounding box was 
characterized by a range of features (Fig. 2a), including the final clas
sifier integrated outputs from the YOLOv8 model, movement and 
detection rates calculated during the tracking process, location proba
bilities for each species, and box dimensions in centimeters, including 
width, height, and area. YOLOv8 output included confidence scores for 
each category and an identification frequency value, quantifying the 
consistency of YOLOv8 detections across the track. For example, if a 
track spanned 11 frames and YOLO identified the same bounding box as 
“Common Tern sit” in 9 frames and “Common Tern stand” in 2 frames, 
the track was assigned a score of 0.81 (9/11) for “Common Tern sit” and 
0.19 (2/11) for “Common Tern stand”, and with scores of 0 for all other 
categories.

2.5.1. Choosing classifier model and model evaluation
We evaluated three classification models: decision tree, random 

forest, and MLP (Multi-Layer Perceptron, a type of artificial neural 
network) (Taud and Mas, 2018), each tested with and without class 
weighting to address class imbalance, resulting in a total of 6 different 
models. Our dataset exhibited a highly imbalanced sample, with more 
Common Tern images than Little Tern images, reflecting the actual 
abundances in the colony. Class imbalance can bias models toward the 
majority class, reducing performance on minority classes. The class- 
weighting option assigns weights inversely proportional to class fre
quencies, emphasizing minority classes during training. Alternative 
methods to handle class imbalance, such as SMOTE (Synthetic Minority 
Over-sampling Technique) and undersampling, were considered but 
deemed less appropriate in this context. In particular, SMOTE generates 
synthetic samples of the minority class to artificially balance the dataset. 
However, since the Little Tern is genuinely less abundant in reality, we 
intentionally chose not to artificially inflate its representation in the 
dataset, as this would not reflect the true ecological distribution. 
Moreover, since SMOTE creates new examples by interpolating between 
existing ones, it can generate biologically implausible samples that do 
not represent realistic variation, potentially hindering rather than 
helping the learning process. Undersampling, which reduces the number 
of majority class (Common Tern) samples, was also avoided because it 
would require discarding a significant amount of valuable data from the 
majority class. Therefore, class weighting was preferred as it maintains 
the integrity of the real-world data distribution while effectively 
addressing class imbalance during model training. For each model, 
hyperparameters were optimized using grid search based on the F1- 
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score (Table 1S). Models were then evaluated using accuracy, recall, 
precision, and F1-score metrics. Accuracy measures the ratio of correct 
predictions to total predictions. Precision evaluates the proportion of 
true positives (TP) among all positive predictions (TP + FP), while recall 
(synonymous with True Positive Rate, TPR) assesses the proportion of 
true positives relative to actual positives (TP / [TP + FN]). The F1-score 
combines precision and recall into a single metric as their harmonic 
mean, providing a balanced evaluation particularly suited for imbal
anced datasets. To evaluate the contribution of individual features to 
classification performance, we trained four variants of the same classi
fier. Beginning with the baseline model using YOLOv8 outputs (confi
dence and frequency), we incrementally added box dimensions (height, 
width, and area), location probability, and tracking rates (movement 
and detection). Each model was evaluated using precision, recall, F1- 
score, and accuracy metrics. These metrics together offer comprehen
sive insights into model performance.

2.6. Breeding identification and counting

To determine the number of breeders for both Common and Little 
Terns, from any given date, two additional post-classification proced
ures were implemented (Fig. 2b).

2.6.1. Tracking breeders across scans along the day
The classifier was applied at four distinct times each day (10:00, 

10:17, 15:00, and 15:17), and individual terns were tracked across these 
scans using IoU. Only sitting terns with an IoU above 0.1 across scans 
were included in the count of breeding birds. The threshold was again 
determined empirically, as described in Section 2.4.3, but set lower (0.1 
instead of 0.4) to account for the longer time interval between scans. At 
this temporal resolution, greater differences, such as changes in the 
birds’ orientation, had to be accommodated. Terns with an IoU below 
this threshold were excluded, as their presence was deemed too tran
sient to indicate active breeding which is expect to be consistent over 
time at each breeding site.

2.6.2. Eliminating duplicate counts of breeders
Overlapping regions between adjacent camera flags could lead to 

double-counting of the same individual. To address this, all detected 
terns’ locations were projected onto a drone image of the island. In 
overlapping areas covered by two flags, only the flag closest to its 
respective camera was counted.

2.7. Comparing manual and algorithmic counts

We compared the results of the counts produced by the algorithm 
with the numbers reported by field observers of breeding Common and 
Little Terns in 2023 and 2024. Manual counting was done twice a week 
during the breeding season in these years using the same two remote- 
controlled cameras employed for algorithm development. The 
observer scanned the island once in every count, utilizing the camera 
adjacent to the relevant area, and completing a full scan of the island 
within 30 min to 2 h, depending on the number of terns. Technical issues 
with one or both cameras, along with communication problems, occa
sionally resulted in missing recordings due to hardware malfunctions. In 
2024, one of the cameras was non-functional for part of the season. 
Consequently, comparable data between manual counts and camera 
observations were available for a total of 10 counting days: 8 in 2023 
and 2 in 2024. We performed a Pearson correlation test between manual 
and algorithmic counts across all sampled days. In addition, we used a 
Bland-Altman analysis, a method to assess the agreement between two 
measurement techniques by plotting the difference between methods 
against their mean, allowing the identification of systematic biases and 
the range of acceptable differences (Martin Bland and Altman, 1986). 
Both analyses were performed using R software (version 4.0.3, R Core 
Team).

3. Results

3.1. Annual manual counts

The annual manual counts of the breeding population sizes for both 

Table 1 
The performance of the tested models across different categories: background, chick, Common Tern flying, Common Tern sitting, Common Tern standing, Little Tern 
sitting, Little Tern standing and other species. For each category, Precision, Recall, and F1-score are reported. In addition, overall model performance is summarized 
using micro, macro, and weighted averages for each metric. The support is for all models except YOLOv8 initial model that was trained with data support of: chick – 
357, Common Tern Flying – 30, Common Tern Sitting – 2799, Common Tern Standing – 770, Little Tern Sitting – 464, Little Tern Standing – 80, Little Tern Flying – 6, 
Other – 16.

Model Performance Metrics Category Weighted Avg Macro Avg Micro Avg

Background Chick Common Tern Little Tern Other

Fly Sit Stand Sit Stand

YOLOv8 Precision 0.45 0.37 0.94 0.73 0.56 0.18 0 0.6 0.29 0.58
Recall 0.63 1 0.72 0.73 0.61 0.56 0 0.69 0.27 0.58
F1-Score 0.52 0.55 0.81 0.73 0.27 0.27 0 0.73 0.27 0.58

Decision Tree Precision 0.42 0.4 0 0.93 0.81 0.81 0 0 0.9 0.42 0.9
Recall 0.34 0.33 0 1 0.71 0.76 0 0 0.9 0.39 0.9
F1-Score 0.38 0.36 0 1 0.76 0.79 0 0 0.9 0.4 0.9

Decision Tree weights Precision 0.24 0.33 1 0.93 0.72 0.82 0 0 0.88 0.5 0.88
Recall 0.29 0.33 1 0.94 0.66 0.85 0 0 0.88 0.51 0.88
F1-Score 0.26 0.33 1 0.94 0.69 0.83 0 0 0.88 0.5 0.88

Random Forest Precision 0.6 0.33 1 0.94 0.84 0.88 0 0 0.91 0.53 0.92
Recall 0.32 0.08 0.5 0.98 0.76 0.77 0 0 0.92 0.49 0.92
F1-Score 0.41 0.13 0.67 0.96 0.8 0.82 0 0 0.91 0.5 0.92

Random Forest weights Precision 0.49 0.36 1 0.96 0.73 0.82 0 0 0.91 0.53 0.89
Recall 0.5 0.33 1 0.94 0.83 0.9 0 0 0.91 0.59 0.89
F1-Score 0.49 0.35 1 0.95 0.78 0.86 0 0 0.91 0.55 0.89

Neural Network Precision 0 0.11 0 0.84 0.82 0.56 0 0 0.8 0.29 0.83
Recall 0 0.08 0 0.96 0.14 0.52 0 0 0.81 0.25 0.83
F1-Score 0 0.1 0 0.9 0.25 0.54 0 0 0.77 0.25 0.83

Neural Network weights Precision 0.06 0.04 0.02 0.96 0.48 0.42 0 0 0.85 0.28 0.66
Recall 0.32 0.5 0.5 0.56 0.55 0.85 0 0 0.56 0.47 0.66
F1-Score 0.1 0.07 0.07 0.71 0.51 0.56 0 0 0.66 0.29 0.66
Support* 38 12 2 1431 221 84 3 2 1793 1793 1793
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the Common and the Little Terns were significantly influenced by the 
counting method (Common Tern: p < 0.001, F2 = 25.18; Little Tern: p <
0.05, F2 = 6.542; Fig. 2S). the counts using the two remote-controlled 
cameras located on the breeding island yielded the highest estimates 
of breeders for the Common Tern, while counts conducted from a car 
resulted in the lowest numbers for both species.

3.2. Model classification performance

The classification performance of YOLOv8 alone, after training on 
tagged images, was significantly lower than most of the classifiers 

trained with the addition of improved features (Table 1, Fig. 3). YOLOv8 
achieved overall categories weighted precision of 0.72 while the best- 
performing model, random forest with weights, achieved 0.91. While 
YOLOv8 alone classified Common Tern sitting with high accuracy 
(recall = 0.94, Table 1, Fig. 3), it identified Little Tern sitting correctly 
only about half of the time (56 %, Fig. 4, Table 1). Moreover, 36 % of 
Little Tern sitting instances were misclassified as Common Tern sitting 
(Fig. 3), highlighting a notable confusion between the two categories. 
Among the six classifiers examined after incorporating the algorithmic 
improvements (with optimal parameters for each model provided in 
Table 2S), the highest scores were observed for the random forest 

Fig. 3. Algorithm development and improvement. (a) Results of the algorithm after the initial YOLOv8 processing stage. (b) Results of the algorithm following 
algorithm improvements using the selected model (random forest with weights). Confusion matrices (upper panels) highlighting results for the “Common Tern 
sitting” and “Little Tern sitting” categories with black squares. Examples of YOLOv8 and final algorithm outputs from (1) July 1, 2023, at 09:04:57 and (2) June 11, 
2024, at 09:05:47. “Common Tern sitting” detections are marked with red squares and “Little Tern sitting” detections with yellow squares. In instances of low 
detection confidence, YOLO may assign multiple category labels to a single bounding box. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)
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classifiers (both weighted and unweighted), which performed similarly. 
The weighted random forest classifier was selected as the final classifier 
due to its superior performance in identifying the Little Tern sitting 

category, which was one of the project’s key focal categories, achieving 
a recall of 0.94. In this case, it misclassified Little Tern sitting as Com
mon Tern sitting only in 7 % of the cases, while maintaining high 

Fig. 4. The Relative importance of the features used to improve YOLOv8 model in the final algorithm (random forest with weights model). Values represent the mean 
± standard error (SE) across five cross-validation folds. The relative importance of each feature is based on the number of times a variable is selected for splitting, 
weighted by the squared improvement of the model, averaged over all trees and scaled so that the sum adds to 1. The features were summarized to four main 
components across all the categories (detailed in Fig. 2S).

Fig. 5. Examples of the final algorithm performance using images from July 1, 2023 across different locations throughout the scanning of the island. Common Tern 
breeders in red squares and Little Tern breeders in yellow. (a) Identification of only Common Tern breeders, excluding standing individuals. (b) Identification of only 
Common Tern breeders, excluding other species breeders such as Black-winged Stilt (visible in the upper left corner). (c) Identification of both Little and Common 
Tern in close proximity, distinguishing between breeders and standing Little Terns. (d) Additional example of identification limited to only breeders terns despite 
close proximity to standing terns. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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accuracy for Common Tern sitting with a recall of 0.94 (Fig. 3, Table 1).
When assessing the contribution of individual features to the algo

rithm’s performance improvement (Fig. 4, Fig. 3S, Table 3S), we found 
that all features substantially contributed. The location probability of 
Common and Little Terns at various island locations emerged as the 
most important feature (after YOLOv8 outputs), particularly for 
correctly classifying the Little Tern - Sit category (Table 3S), followed by 
box dimensions in cm and the tracking rates. However, the differences in 
the importance scores between these features were overall minor, 
indicating that all features contributed meaningfully to the algorithm’s 

enhancement. Evaluating models with progressively added features 
(Table 3S) showed a consistent increase in weighted F1-score, rising 
from 0.85 for the baseline model to 0.87, 0.89, and 0.90 after the 
addition of box dimensions, location probability, and tracking rates, 
respectively. Specifically, box dimensions improved the classification of 
Common Tern - Sit (from F1: 0.91 to 0.93) and Little Tern - Sit (from F1: 
0.50 to 0.58). The inclusion of location probability led to a substantial 
increase in the F1-score for Little Tern - Sit (from F1 0.58 to 0.83). 
Interestingly, the addition of tracking rates had the strongest impact on 
identifying the background category, nearly doubling its precision from 

Fig. 6. (a) Manual breeding counts (red for Common Tern and yellow for Little Tern) and the final algorithm counts (in black) thought the 2023 and 2024 breeding 
seasons. (b) Correlation between manual and algorithm counts (red for Common Tern with r = 0.98 and p < 0.001, and yellow for Little Tern with r = 0.96 and p <
0.001). (c) Bland-Altman plot comparing manual counts with the final algorithm counts (red for Common Tern and yellow for Little Tern). The mean difference 
between the two methods is indicated by the blue dashed line, and the limits of agreement (range covering 95 % of the differences) are represented by purple dotted 
lines. Solid points represent observations within the limits of agreement, and hollow points indicate observations outside the limits. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)
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0.23 to 0.42.
Different categories exhibited distinct box sizes, with Little Tern 

having the smallest box area and width and the Common Tern flying 
category having the largest box area and height (Fig. 4S).

3.3. Final algorithm performance

The final breeding identification and counting algorithm successfully 
distinguished between standing and sitting terns for both Common 
(Fig. 5) and Little Terns (Fig. 5c). It also differentiated between Common 
and Little Terns regardless of their behavior (Fig. 5c) and between terns 
and other species breeding on the same island, such as Black-winged 
Stilts (Fig. 5b).

When comparing the breeding identification and counting algorithm 
with manual counts obtained via the two remote cameras in 2023 and 
2024 (Fig. 6), the mean percentage difference was 2.01 % with a stan
dard error of 3.42 %. By species, the mean percentage difference be
tween the manual and algorithm counts was 4.47 ± 4.06 % for Common 
Terns and 0.43 ± 5.64 % for Little Terns. The Pearson correlation co
efficient between the algorithm and manual counts is 0.98 for the 
Common Tern (t8 = 14.17, p < 0.001) and 0.96 for the Little Tern (t8 =

9.1, p < 0.001; Fig. 6). The Bland-Altman analysis showed wide agree
ment between the two methods for both species. For Common Terns, the 
mean difference was − 10 with wider limits of agreement, reflecting 
greater variability at higher counts. For Little Terns, the mean difference 
was very small (− 1.9) with narrow limits, indicating tight agreement. 
No proportional bias was observed for either species, with only one 
outlier detected for the Little Tern (Fig. 6c).In addition to reporting the 
number of breeding terns for both species, the final algorithm provided 
the location of the breeders on the island (Fig. 7).

4. Discussion

The ability to accurately monitor birds is critical for following and 
conserving their declining populations, which are increasingly threat
ened by human activities, climate changes, and habitat degradation 
(Brierley and Kingsford, 2009; Fay et al., 2015). In this study, we 
introduce a novel, efficient, and fully automated algorithm framework 
for the identification, counting, and spatial mapping of seabird breeding 
colonies. The algorithm represents a significant advancement in wildlife 
monitoring, offering a robust alternative to existing methods. While 
previous approaches have leveraged deep learning and camera systems 
to monitor birds and wild animal in general, they typically rely either on 
fixed camera traps (Chalmers et al., 2025; Fennell et al., 2022; Johanns 
et al., 2022; Noguchi et al., 2025) that provide continuous monitoring of 
a limited number of individuals or small areas, rendering them unsuit
able for large water bird colonies, or on drones (Hayes et al., 2021; 
Rančić et al., 2023; Schad and Fischer, 2023),which can survey broad 
areas and capture behavior but are constrained by flight time and 
operational limitations. Our approach employs remote-controlled sur
veillance cameras, similar to those used in security systems, enabling 
continuous, long-term monitoring of large breeding colonies, specif
ically, over 1300 breeding pairs of Common and Little Terns, across 
extensive spatial and temporal scales. This persistent observation allows 
the detection of dynamic breeding behaviors, and by integrating 
ecological traits specific to water birds species into the algorithm, we 
present, for the first time, a method capable of monitoring an entire 
water bird colony throughout a complete breeding season. Despite the 
challenges of high colony density and species similarity, the framework 
successfully identified, counted, and mapped breeders with an average 
discrepancy of only 2 % compared to manual counts and achieved over 
90 % accuracy in correctly identifying breeding individuals versus non- 
breeding individuals of both species.

Significant investment of time and resources was made to manually 

Fig. 7. Drone image of the terns’ breeding island with the cameras locations (in blue circles), Common Tern breeders (red squares) and Little Tern breeders (yellow 
squares) in two dates along the breeding season: (a) 01/07/2023 and (b) 15/08/2023. The island area is 3200 m2. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)
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monitor these two species at the Atlit colony over a fourteen-year 
period, before the start of the present project. During this time, moni
toring techniques evolved in an effort to improve accuracy. However, 
despite these efforts, the collected data cannot provide answers to one of 
the most fundamental questions of monitoring, whether the number of 
breeding individuals has changed over time. This issue is not unique to 
this project but reflects a broader challenge in conservation efforts. As 
technology improves and becomes more accessible, new, but usually still 
manual methods (Edney and Wood, 2021) are introduced into moni
toring protocols, creating inconsistencies that hinder comparisons over 
time. In cases in which only traditional methods such as observation are 
used, variation between individual surveyors can lead to discrepancies 
of up to 20 %, particularly in large, densely populated colonies 
(Hutchinson, 1980). This situation highlights the critical need for a valid 
automated method to monitor bird colonies that remains reliable over 
time and does not interfere with breeding activities.

YOLOv8 is one of the latest advancements in deep learning classifi
cation, offering one of the highest performance available today 
(Varghese and Sambath, 2024). However, when applying it to distin
guish between similar species or to identify specific behaviors, such as 
breeding, additional enhancements must be considered. On its own, 
after training on 1659 tagged images that yielded 5920 tagged classifi
cations, YOLOv8 achievements were overall low, with a general 
weighted F1 score of 0.73. By integrating animal behavior and ecolog
ical knowledge into the model, we significantly improved its perfor
mance and achieved a general weighted F1 score of 0.91. In the Little 
Tern sitting category, for example, recall improved from 0.56 to 0.90.

This project was developed collaboratively by computer science ex
perts and biologists with extensive experience in monitoring seabird 
colonies. It incorporated features that aid manual field monitoring in the 
algorithm architecture, a critical step toward leveraging AI in ecology. 
Embedding these features into the algorithm significantly improved its 
performance. Birds, and particularly seabirds, exhibit high fidelity to 
their breeding sites (Skutch, 1957). For example, the breeding location 
of Little Terns on the island has changed only once in the past fourteen 
years. Incorporating this site fidelity data into location probabilities 
further enhanced the model’s accuracy. The drawback of this feature is 
that in the event of a sudden shift in breeding locations, the model would 
require updates and retraining. However, as such shifts are normally 
rare, we believe incorporating this feature is both appropriate and 
necessary for achieving good results, especially when monitoring similar 
species that breed in close proximity to one another. In addition, an 
essential behavior of breeding birds is that they spend most of their time 
incubating, remaining seated in the exact same place (Skutch, 1957). 
Traditional methods for monitoring breeding colonies, whether through 
direct observation, single-frame camera images, or drone snapshots 
(Davison et al., 2025; Neupane et al., 2022), provide only a single 
momentary view of the colony. This approach risks missing some 
breeders or incorrectly counting non-breeding birds present in the area 
(Hutchinson, 1980). In the present study, we utilized video footage for 
the first time to incorporate this behavior into the identification of 
breeders, and to our knowledge, this represents the first successful 
automatic differentiation between breeders and non-breeders within a 
colony.

Our method involved tracking individual birds for 11 s (excluding 
the start and end of each sequence) and integrating the frequency of 
YOLOv8 detections for each box as a feature in the final algorithm. 
Additional features, such as detection and movement scores, were also 
included. For example, a bird that stood in a place for a few seconds 
before flying away would receive a lower frequency score. Similarly, a 
bird that moved extensively but remained within the same small area 
and got high frequency score, would be assigned a low movement score. 
Beyond this, post-classification procedures evaluated the location of 
each box at different times of the day, increasing the certainty of 
whether a bird was a breeder. The use of video, rather than single im
ages, for wildlife monitoring, holds immense potential for advancing 

research on wild animals (Kline et al., 2025; Simões et al., 2023). This 
approach can provide detailed and near real-time insights into behav
ioral traits such as nesting, food provisioning (Schindler and Steinhage, 
2021), intra- and interspecific aggression, and the effects of weather on 
animals (Hentati-Sundberg et al., 2023; Kline et al., 2025; Schindler and 
Steinhage, 2021; Simões et al., 2023).

Another significant improvement we incorporated into our algo
rithm that, to the best of our knowledge, is being applied for the first 
time in automatic animal monitoring, is the camera calibration process. 
This process allows the algorithm to include bird size in centimeters as a 
feature, which is one of the most critical distinguishing physical char
acteristics between species in our case, as well as in other cases and 
species (Perktaş and Gosler, 2010). The calibration process enables us to 
extract valuable information from images that is often overlooked in 
current applications, specifically the size and precise location of the 
birds. Automatically monitoring bird locations can contribute signifi
cantly to understanding a wide range of biological traits, providing in
sights that can later be used as conservation tools. For example, tracking 
the spatial distribution of birds throughout the breeding season can 
reveal why certain areas are preferred as well as why this preference 
may change over time. Furthermore, the location map can be overlaid 
with additional environmental layers, such as sand moisture, soil tem
perature, elevation, distance to water or the presence of other species, 
providing deeper ecological context for understanding habitat selection 
and use. When combined with additional tools, such as leg rings or wing 
tags, this approach could facilitate a variety of research endeavors, 
including tracking individual traits over multiple timescales, studying 
the impacts of environmental changes on different individuals, and 
analyzing relationships within and between species. These advance
ments have the potential to deepen our understanding of animal 
behavior and ecology, ultimately supporting more effective conserva
tion strategies.

We were unable to achieve high accuracy in identifying chicks, and 
we recommend collecting more targeted data to address this challenge. 
Targeted data collection of chicks must be conducted during a specific 
period of the breeding season, after the chicks have hatched. Moreover, 
to enable accurate identification, data should be collected across mul
tiple developmental stages, as the appearance of a three-day-old chick 
differs considerably from that of a two-week-old. During the chick- 
rearing period, the optimal time for image collection is in the morn
ing, when chicks are most active. As the day progresses, chicks tend to 
seek shelter from the sun, often hiding in vegetation or other shaded 
areas, making detection more challenging. An additional technique that 
can enhance chick detection, particularly given their small size and 
camouflaged appearance against the ground, is the use of thermal 
infrared cameras. These cameras can more effectively distinguish chicks 
from the background and even detect individuals concealed within 
vegetation (Ghosh et al., 2024). Identifying chicks in a large and densely 
populated colony presents significant difficulties, but it is both an 
important and urgent task. Avian species, especially water birds, 
including terns, serve as natural reservoirs for various diseases, such as 
avian influenza and avian malaria (Pantin-Jackwood and Swayne, 
2009). Since 2022, multiple outbreaks of highly pathogenic avian 
influenza (HPAI) occurred worldwide, causing unprecedented mortality 
rates (Camphuysen and Gear, 2022). Over the past decade, two mass 
mortality events among tern chicks at this site, attributed to disease 
outbreaks, have led to an 80 % reduction in the chick population. These 
events underscore the urgent need for automated monitoring systems to 
track chicks and enable early detection of unusual mortality events.

Camera-based ecological monitoring and research are rapidly 
expanding in both scope and application (Cusick et al., 2024; Johanns 
et al., 2022; Lahoz-Monfort and Magrath, 2021; Rafiq et al., 2025; 
Reynolds et al., 2024; Song et al., 2024). Although the algorithm in this 
study was developed using data from a single tern colony in Israel, the 
methodology and technology employed are highly adaptable and scal
able. The relevance of this technology extends far beyond terns and 
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seabirds, offering potential applications across a wide range of avian 
species, other animal taxa, and ecological settings. For example, similar 
systems could be deployed at bat and bird communal roosting sites, 
other seabird colonies, or wetland breeding or wintering grounds. The 
approach is suitable for diverse landscapes as well, from open beach 
colonies, forested areas, urban roosts, or rugged cliffs, provided that 
camera placement offers sufficient visibility and stability. The increasing 
global availability of surveillance cameras, often already installed at key 
ecological sites (e.g., breeding colonies, migratory stopovers, wintering 
grounds), further facilitates the widespread adoption of this approach. 
In our study, we utilized standard surveillance equipment, a cost- 
effective and widely available technology. The total cost of the two 
cameras used was less than $3500, making this an affordable solution 
for long-term monitoring and research. In addition, model training was 
conducted using a GPU provided for free through Google Colab, elimi
nating the need for dedicated high-performance computing resources. 
By combining relatively low-cost equipment, minimal infrastructure 
requirements, and flexible model training pipelines, this approach is 
well-positioned for adaptation across taxa and ecosystems, thus 
enhancing the generalizability and utility of automated ecological 
monitoring. In the face of accelerating biodiversity loss, the develop
ment of accurate and reliable monitoring tools, like the algorithm pro
posed in this study, is critical for providing high-resolution data to 
support wildlife management, research, and conservation efforts. By 
combining computer vision with deep learning and ecological features, 
our method offers a scalable solution for identifying, counting, and 
mapping wildlife populations while minimizing human disturbance. 
This innovative approach has significant potential to improve the effi
ciency and accuracy of monitoring and research efforts, addressing 
global environmental challenges and informing effective conservation 
strategies.
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